Psychology, asked by sunilbishnoi1979, 5 months ago

Two standard dice is thrown simultaneously for three times. Each time the
numbers obtained on both dice is always different prime numbers and different
from earlier throws. What can be the highest sum of all outcomes in three
throws?​

Answers

Answered by BetteRthenUhh
0

Explanation:

Sample space for total number of possible outcomes

(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),

(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),

(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),

(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),

(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),

(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)

Total number of outcomes =36

(i)

Favorable outcomes for sum as prime are

(1,1),(1,2),(1,4),(1,6),(2,3),(2,3),(2,5),(3,2),(3,4),(4,1),(4,3),(5,2),(5,6),(6,1),(6,5)

Number of favorable outcomes =15

Hence, the probability of getting the sum as a prime number. =

36

15

=

12

5

(ii)

Favorable outcomes for total of atleast 10 are

(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)

Number of favorable outcomes =6

Hence, the probability of getting a total of atleast 10 =

36

6

=

6

1

(iii)

Favorable outcomes for a doublet of even number are

(2,2),(4,4),(6,6)

Number of favorable outcomes =3

Hence, the probability of getting a doublet of even number =

36

3

=

13

1

(iv)

Favorable outcomes for a multiple of 2 on one dice and a multiple of 3 on the other dice are

(2,3),(2,6),(3,2),(3,4),(3,6),(4,3),(4,6),(6,2),(6,3),(6,4),(6,6)

Number of favorable outcomes =11

Hence, the probability of getting a multiple of 2 on one dice and a multiple of 3 on the other dice =

36

11

(v)

Favorable outcomes for getting a multiple of 3 as the sum

(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3)(6,6)

Number of favorable outcomes =12

Hence, the probability of getting a multiple of 3 as the sum = 12 = 1

⠀⠀⠀⠀⠀⠀⠀⠀⠀36⠀3

Similar questions