Math, asked by tanujkarunya, 8 months ago

Two straight line AB and CD intersect one another at the point O. If angle AOC + angle COB +angle BOD =274 degrees, then angle AOD=​

Answers

Answered by silentlover45
40

\large\underline{Diagram:-}

\large\underline{Questions:-}

  • Two straight line AB and CD intersect one another at the point O. If angle AOC + angle COB +angle BOD =274 degrees, then angle AOD.

\large\underline{Given:-}

  • Two straight line AB and CD intersect one another at the point O.
  • If angle AOC + angle COB +angle BOD =274 degrees,

\large\underline{To find:-}

  • find the Angle AOD ...?

\large\underline{Solutions:-}

Let us draw the diagram showing two line AB and CD intersect at a point O.

\: \: \: \: \: Thus,

\: \: \: \: \: \: \: \angle AOD, \: \angle AOC, \: \angle COD and \angle BOD

\: \: \: \: \: \therefore \: \: Form \: \: a \: \: complete \: \: angle, \: \: that \: \: is \: \: sum \: \: of \: \: the \: \: angle \: \: is \: \: {360} \degree

\: \: \: \: \: \: \: \angle AOD \: + \: \angle AOC \: + \: \angle COD \: + \: \angle BOD \: \: = \: \: {360} \degree \: \: \: \: \: ....{(i)}.

\: \: \: \: \: And

\: \: \: \: \: Given \: \: that

\: \: \: \: \: \: \: \angle AOC \: + \: \angle COD \: + \: \angle BOD \: \: = \: \: {274} \degree \: \: \: \: \: ....{(ii)}.

\: \: \: \: \: \therefore \: \: Subtracting \: \: Eq. \: \: {(i)} \: from \: Eq. \: \: {(ii)} \: \: we \: \: get.

\: \: \: \: \: \angle AOD \: \: = \: \: {360} \degree \: - \: {274} \degree

\: \: \: \: \: \angle AOD \: \: = \: \: {86} \degree

______________________________________

______________________________________

Attachments:
Answered by Anonymous
10

{ \bold{ \text{Given:-}}}}

  • { \bf \angle \: aoc +  \angle \: cob  +  \angle \: bod = 274}

{ \bold{ \text{To \: Find:-}}}

  • { \bf \angle \: aod}

{ \bold{ \text { Solution:-}}}

{ \bf \angle \: aod +  \angle \: aoc +  \angle \: cob +  \angle \: bod = 360}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ({ \sf \because \: complete \: angle})

 \implies{ \bf \angle \: aod  + 274 = 360}

 \implies{ \bf  \angle \:aod = 360 - 274}

{ \boxed{ \sf{ \pink    {\angle \: aod = 55}}}}

So angle AOD = 55

Angle Names :-

  • Acute Angle

  • Right Angle

  • Obtuse Angle

  • Straight Angle

  • Reflex Angle

  • Zero Angle

____________________________________________________

Attachments:
Similar questions