Two stright lines AB and CD intersect one another at the point O if angle AOC+ COB+ BOD =274 then angle AOD
Answers
Step-by-step explanation:
Two straight line AB and CD intersect one another at the point O. If angle AOC + angle COB +angle BOD =274 degrees, then angle AOD.
\large\underline{Given:-}
Given:−
Two straight line AB and CD intersect one another at the point O.
If angle AOC + angle COB +angle BOD =274 degrees,
\large\underline{To find:-}
Tofind:−
find the Angle AOD ...?
\large\underline{Solutions:-}
Solutions:−
Let us draw the diagram showing two line AB and CD intersect at a point O.
\: \: \: \: \: Thus,Thus,
\: \: \: \: \: \: \: \angle AOD, \: \angle AOC, \: \angle COD and \angle BOD∠AOD,∠AOC,∠CODand∠BOD
\: \: \: \: \: \therefore \: \: Form \: \: a \: \: complete \: \: angle, \: \: that \: \: is \: \: sum \: \: of \: \: the \: \: angle \: \: is \: \: {360} \degree∴Formacompleteangle,thatissumoftheangleis360°
\: \: \: \: \: \: \: \angle AOD \: + \: \angle AOC \: + \: \angle COD \: + \: \angle BOD \: \: = \: \: {360} \degree \: \: \: \: \: ....{(i)}.∠AOD+∠AOC+∠COD+∠BOD=360°....(i).
\: \: \: \: \: AndAnd
\: \: \: \: \: Given \: \: thatGiventhat
\: \: \: \: \: \: \: \angle AOC \: + \: \angle COD \: + \: \angle BOD \: \: = \: \: {274} \degree \: \: \: \: \: ....{(ii)}.∠AOC+∠COD+∠BOD=274°....(ii).
\: \: \: \: \: \therefore \: \: Subtracting \: \: Eq. \: \: {(i)} \: from \: Eq. \: \: {(ii)} \: \: we \: \: get.∴SubtractingEq.(i)fromEq.(ii)weget.
\: \: \: \: \: \angle AOD \: \: = \: \: {360} \degree \: - \: {274} \degree∠AOD=360°−274°
\: \: \: \: \: \angle AOD \: \: = \: \: {86} \degree∠AOD=86°
______________________________________
______________________________________