two substances A and B have specific heat c and 2c .If A and B are given Q and 4Q amount of heat, the change in their temperature is the same If mass of A is m what is the mass of B
Answers
when same heat is applied for different substances , the rise in temperature depends on heat capacity (mass*specific heat).if T2 is the final temperature then the relation for rise in temperature is T2=T1+(Q/(mc)). where m is mass , c is specific heat , Q is heat supplied and T1 is initial temperature of the substance.Heat capacity is defined as the “amount of heat required to rise the whole mass by 1 deg celcius “
Answer:
The mass of B will be 2m if mass of A is m and they have same Temperature change.
Explanation:
Step 1 : Write down the formula for getting the quantity of heat.
Let the quantity of heat be Q, the specific heat capacity be c and the temperature change be T and the mass of the substance be m.
Q = mcT
Now asking T the subject of the equation we have :
T = mc/Q
Step 2 : Identify the values given and substitute in the formula.
A :
Mass = m
Specific heat capacity = c
Quantity of heat = Q
Let the change in temperature for both be T.
B :
Quantity of heat = 4Q
Specific heat capacity = 2c
Mass =?
Temperature = T.
From the formula :
M = 4Q/2cT........... 1)
From A we can get T.
T = Q/mc
Substitute this equation 1.
M = 4Q/(2c × Q/mc)
= 4Q ÷ 2Q/m
= 4Q × m/2Q = 2m
Therefore the mass of B will have a mass of 2m.