Math, asked by devkumarbhargava042, 18 days ago

Two supplementary angle diffe by 56.
Find the angles. ​

Answers

Answered by rehanna0911
3

Answer:

Let one angle be x.

Let the other angle be (180° - x)

x + 180° - x = 56°

2x = 360°

x = 118°

One angle x = 118°

The second angle (180° - x) = 180° - 118° = 62°

___________________

Hope it helps you!!

:)

Answered by StarFighter
21

Answer:

Given :-

  • Two supplementary angles differ by 56°.

To Find :-

  • What are the angles.

Solution :-

Let,

\mapsto \bf First\: Angle =\: x

\mapsto \bf Other\: Angle =\: 180^{\circ} - x

According to the question :

\bigstar Two supplementary angles are differ by 56°.

So,

\small \implies \bf \bigg\{First\: Angle\bigg\} - \bigg\{Other\: Angle\bigg\} =\: 56^{\circ}\\

\implies \sf x - (180^{\circ} - x) =\: 56^{\circ}

\implies \sf x - 180^{\circ} + x =\: 56^{\circ}

\implies \sf x + x =\: 56^{\circ} + 180^{\circ}

\implies \sf 2x =\: 236^{\circ}

\implies \sf x =\: \dfrac{236^{\circ}}{2}

\implies \sf\bold{\purple{x =\: 118^{\circ}}}\\

Hence, the required angles are :

First Angle :

\dashrightarrow \sf First\: Angle =\: x

\dashrightarrow \sf\bold{\red{First\: Angle =\: 118^{\circ}}}\\

Other Angle :

\dashrightarrow \sf Other\: Angle =\: (180^{\circ} - x)\\

\dashrightarrow \sf Other\: Angle =\: (180^{\circ} - 118^{\circ})\\

\dashrightarrow \sf\bold{\red{Other\: Angle =\: 62^{\circ}}}\\

\sf\boxed{\bold{\purple{\therefore\: The\: angles\: are\: 118^{\circ}\: and\: 62^{\circ}\: .}}}\\

Similar questions