Math, asked by sa01, 1 year ago

two supplementary angles are in ratio 2 is to 7 find the measures of angle

Answers

Answered by Panzer786
7
Hii friend,

Ratio of the two supplementary angle are 2:7

Let X be common multiply in both the supplementary angle.

The angle become 2X and 7X.

We know that the sum of two supplementary angle is 180°.

2X +7X = 180

9X = 180°

X = 180°/9

X = 20°

Therefore,

First Angle = 2X = 2×20 = 40°

Second Angle = 7X = 7×20 = 140°.

HOPE IT WILL HELP YOU.... :-)
Answered by silentlover45
6

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

\large\underline{Given:-}

  • Ratio ⇢ 2 : 7

\large\underline{To find:-}

  • find the measures of both the angle.

\large\underline{Solutions:-}

  • Let the two Supplementary Angle be 2x and 7x.

✰ We know that,

»★ Supplementary Angle have measure 180°

»Now,

\: \: \: \: \: \leadsto \: \: {2x} \: + \: {7x} \: \: = \: \: {180} \: \degree

\: \: \: \: \: \leadsto \: \: {9x} \: \: = \: \: {180} \: \degree

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: \frac{180}{9} \: \degree

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {20} \: \degree

»★ So, The Ratio of two Supplementary Angle is 2x and 7x.

\: \: \: \: \: \leadsto \: \: {2x} \: \: \leadsto \: \: {2} \: \times \: {20} \: \: \leadsto \: \: {40} \: \degree

\: \: \: \: \: \leadsto \: \: {7x} \: \: \leadsto \: \: {7} \: \times \: {20} \: \: \leadsto \: \: {140} \: \degree

»★ Hence,

\: \: \: \: \: \star \: \: \: The \: \: Ratio \: \: of \: \: two \: \: Supplementary \: \: Angle \: \: is  \: \: {40} \: \degree \: \: and \: \: {140} \: \degree. \: \: \: \star

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

Similar questions