Math, asked by ummemalekwala4838, 1 month ago

Two supplementary angles are such that the measure of one angle is 4/5 of the measure of the other angle. Find the measure of the measure

Answers

Answered by sethrollins13
157

Given :

  • Measure of one supplementary angle is 4/5 .

To Find :

  • Measure of other supplementary angle .

Solution :

\longmapsto\tt{Let\:one\:angle\:be=x}

\longmapsto\tt{Other\:angle=\dfrac{4x}{5}}

As we know that the sum of supplementary angles is 180° . So ,

\longmapsto\tt{\dfrac{4x}{5}+x=180}

\longmapsto\tt{\dfrac{5x+4x}{5}=180}

\longmapsto\tt{\dfrac{9x}{5}=180}

\longmapsto\tt{x=\dfrac{180\times{5}}{9}}

\longmapsto\tt\bf{x=100}

VERIFICATION :

\longmapsto\tt{\dfrac{4}{{\cancel{5}}}\times{{\cancel{100}}}+100=180}

\longmapsto\tt{4\times{20}+100=180}

\longmapsto\tt{80+100=180}

\longmapsto\tt\bf{180=180}

HENCE VERIFIED

Answered by Anonymous
272

Answer:

Given :-

  • Two supplementary angles are such that the measure of one angles is ⅘ of the measure of the other angle.

To Find :-

  • What is the measure of the angle.

Solution :-

Let,

\small\mapsto \bf One\: Angle_{(Supplementary\: Angle)} =\: a

\small\mapsto \bf Another\: Angle_{(Supplementary\: Angle)} =\: \dfrac{4a}{5}

As we know that :

\footnotesize\bigstar\: \: \sf\boxed{\bold{\pink{Sum\: Of\: The\: Measures\: Of\: Two\: Supplementary\: Angle =\: 180^{\circ}}}}\: \: \bigstar

According to the question by using the formula we get,

\implies \bf \bigg\{a\bigg\} + \bigg\{\dfrac{4a}{5}\bigg\} =\: 180^{\circ}

\implies \sf a + \dfrac{4a}{5} =\: 180^{\circ}

\implies \sf \dfrac{5a + 4a}{5} =\: 180^{\circ}

By doing cross multiplication we get,

\implies \sf 5a + 4a =\: 5(180^{\circ})

\implies \sf 5a + 4a =\: 5 \times 180^{\circ}

\implies \sf 9a =\: 900^{\circ}

\implies \sf a =\: \dfrac{\cancel{900^{\circ}}}{\cancel{9}}

\implies \sf a =\: \dfrac{100^{\circ}}{1}

\implies \sf\bold{\purple{a =\: 100^{\circ}}}

Hence, the measure of the each supplementary angles are :

One Angle Of Supplementary Angle :

\small\longrightarrow \sf One\: Angle_{(Supplementary\: Angle)} =\: a

\small\longrightarrow \sf\bold{\red{One\: Angle_{(Supplementary\: Angle)} =\: 100^{\circ}}}

Another Angle Of Supplementary Angle :

\small\longrightarrow \sf Another\: Angle_{(Supplementary\: Angle)} =\: \dfrac{4a}{5}

\small\longrightarrow \sf Another\: Angle_{(Supplementary\: Angle)} =\: \dfrac{4 \times 100^{\circ}}{5}

\small\longrightarrow \sf Another\: Angle_{(Supplementary\: Angle)} =\: \dfrac{\cancel{400^{\circ}}}{\cancel{5}}

\small\longrightarrow \sf\bold{\red{Another\: Angle_{(Supplementary\: Angle)} =\: 80^{\circ}}}

{\footnotesize{\bold{\underline{\therefore\: The\: measure\: of\: supplementary\: angles\: are\: 80^{\circ}\: and\: 100^{\circ}\: respectively\: .}}}}

Similar questions