Math, asked by Mush43181, 6 months ago

Two supplementary angles differ by 52 degree. Find the angles

Answers

Answered by pulakmath007
2

SOLUTION

GIVEN

Two supplementary angles differ by 52°

TO DETERMINE

The angles

CONCEPT TO BE IMPLEMENTED

Two angles are said to be supplementary angle if sum of the angles is 180°

EVALUATION

Let the supplementary angles are x and 180° - x

Also suppose that x is greater between them

It is also stated that two supplementary angles differ by 52°

 \therefore \:  \sf{ \: x - ( {180}^{ \circ}  - x) =  {52}^{ \circ} }

 \implies \:  \sf{ \: 2x -  {180}^{ \circ}   =  {52}^{ \circ} }

 \implies \:  \sf{ \: 2x  =   {180}^{ \circ}    +   {52}^{ \circ} }

 \implies \:  \sf{ \: 2x  =   {232}^{ \circ}   }

 \implies \:  \sf{ \: x  =   {116}^{ \circ}   }

So the angles are 116 ° and 180° - 116° = 64°

FINAL ANSWER

Hence the required angles are 116° & 64°

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Measure of supplement of 179 degrees is

https://brainly.in/question/23762517

2. If p-q-r and d (pq) = 2, d (pr) =10 then find d(qr)

https://brainly.in/question/26201032

Answered by nabhyavanjani
0

Answer:

116 degrees

Step-by-step explanation:

Similar questions