Math, asked by ganeshkrish, 1 year ago

Two tangent segments PA and PB are drawn to a circle with centre O such that angle APB=120.Prove that OP=2AP

Answers

Answered by piyushbd28
21

Hi there here's your answer

Hope it helps

Attachments:
Answered by Mathkid
4

Answer:

OP = 2AP

Step-by-step explanation:

Given: O is the centre of the circle. PA and PB are tangents drawn to a circle and ∠APB = 120°.

To prove: OP = 2AP

Proof:

In ΔOAP and ΔOBP,

OP = OP    (Common)

∠OAP = ∠OBP  (90°) (Radius is perpendicular to the tangent at the point of contact)

OA = OB  (Radius of the circle)

∴ ΔOAP is congruent to ΔOBP (RHS criterion)

∠OPA = ∠OPB = 120°/2 = 60° (CPCT)

In ΔOAP,

cos∠OPA = cos 60° = AP/OP

Therefore, 1/2 =AP/OP

Thus, OP = 2AP

                           Hence, proved.

Similar questions