Math, asked by saniyasaratkar1312, 5 months ago

two tangents are drawn from the point -2,1 to the parabola y2 =4x if theta is angle between tangent then tan theta

Answers

Answered by TheValkyrie
84

Answer:

tan θ = 3

Step-by-step explanation:

Given:

  • Two tangents are drawn from the point (-2,1)
  • Equation of the parabola = y² = 4x
  • θ is the angle between the tangents

To Find:

  • tan θ

Solution:

Here equation of the parabola is of the form y² = 4ax = y² = ax

Comparing we get the value of a as 1.

Now equation of tangent to a parabola is given by,

Equation of tangent = y = mx + a/m

where m is the slope of the tangent

Here a = 1, hence,

Equation of tangent = y = mx + 1/m

Given that the tangents are drawn from the point (-2, 1) ie, this point lies on the tangent.

Therefore,

1 = -2m + 1/m

Cross multiplying,

1m = -2m² + 1

2m² + m - 1 = 0

Factorising by splitting the middle term,

2m² -m + 2m - 1 = 0

m (2m - 1) + 1 (2m - 1) = 0

(2m - 1) (m + 1) = 0

Either

m + 1 = 0

m = -1

Or

2m - 1 = 0

m = 1/2

Hence the slopes of the tangent are -1 and 1/2

Let us take them as m₁ and m₂

Now tan θ between two lines is given by,

\tt tan\: \theta=\bigg | \dfrac{m_2-m_1}{1+m_1m_2}\bigg|

Substitute the data,

\tt tan\: \theta=\dfrac{\dfrac{1}{2} +1}{1+\dfrac{1}{2}\times  -1}

\tt tan\: \theta=\dfrac{3}{2}\div \dfrac{1}{2}

\tt tan\: \theta=3

Hence the value of tan θ is 3.

Answered by DARLO20
28

\Large\bf{\color{cyan}GiVeN,} \\

  • Two tangents are drawn from the point (-2 , 1) to the parabola \bf{y^2\:=\:4x}.

Equation of parabola,

\orange\bigstar\:\:\bf\blue{y^2\:=\:4ax} \\

According to the question,

  • a = 1

Equation of tangent,

\green\bigstar\:\:\bf\purple{y\:=\:mx\:+\:\dfrac{a}{m}\:} \\

\longmapsto\:\:\bf{y\:=\:mx\:+\:\dfrac{1}{m}\:} \\

\bf\red{Here,}

  • x = -2

  • y = 1

\longmapsto\:\:\bf{1\:=\:-2m\:+\:\dfrac{1}{m}\:} \\

\longmapsto\:\:\bf{m\:=\:-2m^2\:+\:1\:} \\

\longmapsto\:\:\bf{2m^2\:+\:m\:-\:1\:=\:0\:} \\

\longmapsto\:\:\bf{2m^2\:+\:2m\:-\:m\:-\:1\:=\:0\:} \\

\longmapsto\:\:\bf{2m\:(m\:+\:1)\:-\:1\:(m\:+\:1)\:=\:0\:} \\

\longmapsto\:\:\bf{(2m\:-\:1)\:(m\:+\:1)\:=\:0\:} \\

\longmapsto\:\:\bf{m\:=\:\dfrac{1}{2}\:~~~or~~~\:m\:=\:-1\:} \\

\bf\pink{Let,}

  • \bf{m_1\:=\:\dfrac{1}{2}} \\

  • \bf{m_2\:=\:-1} \\

\purple\bigstar\:\:\bf{\color{peru}\tan{\theta}\:=\:\mid\:{\dfrac{m_1\:-\:m_2}{1\:+\:m_1\:m_2}}\:\mid} \\

:\implies\:\:\bf{\tan{\theta}\:=\:\mid\:{\dfrac{0.5\:-\:(-1)}{1\:+\:0.5\:(-1)}}\:\mid} \\

:\implies\:\:\bf{\tan{\theta}\:=\:\mid\:{\dfrac{1.5}{1\:-\:0.5}}\:\mid} \\

:\implies\:\:\bf{\tan{\theta}\:=\:\mid\:{\dfrac{1.5}{0.5}}\:\mid} \\

:\implies\:\:\bf\orange{\tan{\theta}\:=\:3\:} \\

Similar questions