Math, asked by Anonymous, 3 months ago

two tangents are drawn from the point -2,1 to the parabola y2 =4x if theta is angle between tangent then tan theta

Answers

Answered by hotcupid16
3

\Large\bf{\color{cyan}GiVeN,} \\

Two tangents are drawn from the point (-2 , 1) to the parabola \bf{y^2\:=\:4x}.

☆ Equation of parabola,

\orange\bigstar\:\:\bf\blue{y^2\:=\:4ax} \\

☆ According to the question,

a = 1

☆ Equation of tangent,

\green\bigstar\:\:\bf\purple{y\:=\:mx\:+\:\dfrac{a}{m}\:} \\

\longmapsto\:\:\bf{y\:=\:mx\:+\:\dfrac{1}{m}\:} \\

\bf\red{Here,}

x = -2

y = 1

\longmapsto\:\:\bf{1\:=\:-2m\:+\:\dfrac{1}{m}\:} \\

\longmapsto\:\:\bf{m\:=\:-2m^2\:+\:1\:} \\

\longmapsto\:\:\bf{2m^2\:+\:m\:-\:1\:=\:0\:} \\

\longmapsto\:\:\bf{2m^2\:+\:2m\:-\:m\:-\:1\:=\:0\:} \\

\longmapsto\:\:\bf{2m\:(m\:+\:1)\:-\:1\:(m\:+\:1)\:=\:0\:} \\

\longmapsto\:\:\bf{(2m\:-\:1)\:(m\:+\:1)\:=\:0\:} \\

\longmapsto\:\:\bf{m\:=\:\dfrac{1}{2}\:~~~or~~~\:m\:=\:-1\:} \\

\bf\pink{Let,}

\bf{m_1\:=\:\dfrac{1}{2}} \\

\bf{m_2\:=\:-1} \\

\purple\bigstar\:\:\bf{\color{peru}\tan{\theta}\:=\:\mid\:{\dfrac{m_1\:-\:m_2}{1\:+\:m_1\:m_2}}\:\mid} \\

:\implies\:\:\bf{\tan{\theta}\:=\:\mid\:{\dfrac{0.5\:-\:(-1)}{1\:+\:0.5\:(-1)}}\:\mid} \\

:\implies\:\:\bf{\tan{\theta}\:=\:\mid\:{\dfrac{1.5}{1\:-\:0.5}}\:\mid} \\

:\implies\:\:\bf{\tan{\theta}\:=\:\mid\:{\dfrac{1.5}{0.5}}\:\mid} \\

:\implies\:\:\bf\orange{\tan{\theta}\:=\:3\:} \\

Similar questions