Math, asked by riya8815, 5 months ago

Two tangents make an angle of 120 degree with each other are drawn to a circle of radius 6 CM show that the length of each tangent is 2✓3.

plz answer this question....​

Answers

Answered by SarcasticL0ve
4

{\underline{\underline{\frak{Answer\;:}}}}\\ \\

\setlength{\unitlength}{1.1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(1,3){6.4}}\put(25,30){\line(1, - 3){6.4}}\put(20,7){\line(3,1){68.5}}\put(20,52.8){\line(3, - 1){68.5}}\put(25,30){\circle*{1}}\put(88,30){\circle*{1.2}}\put(22,30){\sf O}\put(31,6){\sf A}\put(31,52){\sf B}\put(90,28.5){\sf P}\multiput(25,30)(3,0){21}{\line(2,0){1.8}}\qbezier(81.5,32)(78,30)(81,27.5)\qbezier(76,30)(74.5,28)(76,26)\put(33,45){\line(1,3){1.1}}\put(30,45.8){\line(3, - 1){3.2}}\put(30.5,14){\line(3,1){3.2}}\put(33.5,15){\line(1, - 3){1.1}}\put(21,18){\sf 6 cm}\put(73,30.8){\sf 120^\circ$}\put(69,26){\sf 60^\circ$}\end{picture}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

To Prove:

  • AP = BP = 2√3 cm

Proof:

In ∆ OAP,

\sf\angle\;OPA = 60^\circ\\ \\

:\implies\sf Sin\;60^\circ = \dfrac{OA}{OP}\\ \\

:\implies\sf \dfrac{ \sqrt{3}}{2} = \dfrac{6}{OP}\\ \\

:\implies\sf OP = \dfrac{12}{ \sqrt{3}} \times \dfrac{ \sqrt{3}}{ \sqrt{3}}\\ \\

:\implies\sf OP = \dfrac{ 12 \sqrt{3}}{3}\\ \\

:\implies\sf{\boxed{\frak{\pink{OP = 4 \sqrt{3}\;cm}}}}\;\bigstar\\ \\

\underline{\sf{\bigstar\;Now,\;Using\; Pythagoras\; Theorem\;:}}\\ \\

:\implies\sf OP^2 = OA^2  + AP^2\\ \\

:\implies\sf AP^2 = OP^2  - OA^2\\ \\

:\implies\sf AP^2 = ( 4 \sqrt{3})^2 - (6)^2\\ \\

:\implies\sf AP^2 = 48 - 36\\ \\

:\implies\sf AP^2 = 12\\ \\

:\implies\sf \sqrt{AP^2} = \sqrt{12}\\ \\

:\implies\sf{\boxed{\frak{\purple{AP = 2 \sqrt{3}\;cm}}}}\;\bigstar\\ \\

\qquad\qquad\quad\dag\;{\underline{\underline{\bf{\pink{Hence,\;Proved!!}}}}}

Similar questions