Math, asked by dhananjaysingh6446, 1 year ago

Two tangents pl and pm are drawn to a circle with centre o from an external point p.Prove that lpm= 2olm

Answers

Answered by 16aryansin
11

Answer:MARK IT BEST


Step-by-step explanation:


Attachments:
Answered by dk6060805
1

Tangents are Perpendicular to Radius at Circumference

Step-by-step explanation:

In quadrilateral OLMP,

\angleOLP = \angle OMP = 90° (Radius is perpendicular to tangent)

\angleLPM + \angleOLM + \anglePMO + \angle MOL = 360 °

\angleLPM + 90° + 90° + \angleLOM = 360 °

\angleLPM + \angleLOM = 180 °

\angleLOM = 180° - \angle LPM """(1)

In LOM,  

\angleLOM + \angleLMO + \angleMLO = 180 °

180 - \angleLOM + \angleLMO + \angleMLO = 180° (Using (1))

\angleLMO + \angleMLO = 180° - 180° + \angleLPM

So, 2 \angleOLM = \angleLPM (As \angleLMO = \angleMLO, OL = OM) Proved!

Attachments:
Similar questions