Math, asked by mjsabiq, 4 days ago

two tangents TP and TQ are drawn to a circle with centre O from an external point Prove that PTQ=2 OPQ.​

Answers

Answered by siddhisingh76580
2

Answer:

Refer image

We know that length of taughts drawn from an external point to a circle are equal

∴ TP=TQ−−−(1)

4∴ ∠TQP=∠TPQ (angles of equal sides are equal)−−−(2)

Now, PT is tangent and OP is radius.

∴ OP⊥TP (Tangent at any point pf circle is perpendicular to the radius through point of cant act)

∴ ∠OPT=90

o

or, ∠OPQ+∠TPQ=90

o

or, ∠TPQ=90

o

−∠OPQ−−−(3)

In △PTQ

∠TPQ+∠PQT+∠QTP=180

o

(∴ Sum of angles triangle is 180

o

)

or, 90

o

−∠OPQ+∠TPQ+∠QTP=180

o

or, 2(90

o

−∠OPQ)+∠QTP=180

o

[from (2) and (3)]

or, 180

o

−2∠OPQ+∠PTQ=180

o

∴ 2∠OPQ=∠PTQ−−−− proved

Answered by Teluguwala
9

Given,

a circle with centre O, an external point T and two tangents TP and TQ to the cirlce

 \:

where,

P, Q are the points of contact (See figure)

 \:

We need to prove that,

∠PTQ = 2∠OPQ

 \:

Let,

∠PTQ = θ

 \:

Now,

by Theorem, TP = TQ

 \:

So,

ΔTPQ is an isosceles triange

 \:

Therefore,

∠TPQ + ∠PQT + ∠QTP = 180° (Sum of three angles)

 \displaystyle \sf⟹  \: ∠TPQ + ∠PQT   \: =   \: \frac{1}{2} (180 \degree -  \theta) \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \: 90 \degree -  \frac{1}{2}  \theta

 \:

Also,

by Theorem, ∠QPT = 90°

 \:

So,

 \sf∠OPQ = ∠OPT - ∠TPQ

 \displaystyle\sf \: \: \:    \:  \: \:  \:  \:  \:   \:  \:  \:  \:  \: = 90 \degree -  \bigg[90 -  \frac{1}{2}  \theta  \bigg  ] \:  =   \: \frac{1}{2}  \theta \:  =   \: \frac{1}{2}  \angle \: PTQ

 \:

This gives,

 \displaystyle \sf∠OPQ  \: =  \:  \frac{1}{2} ∠PTQ

∴ \: \displaystyle \sf ∠PTQ  \: =  \: 2∠OPQ

Similarly PTQ = 2OQP

 \:

Hence proved !!

 \:

Attachments:
Similar questions