Math, asked by aastha001, 6 months ago

Two tangents TP and TQ are drawn to a circle with O from an external point T. Prove that angle PTQ=2 angle OPQ.​

Answers

Answered by parthnagane6142
1

We know that, the lengths of tangents drawn from an external point to a circle are equal.

∴ TP = TQ

In ΔTPQ,

TP = TQ

⇒ ∠TQP = ∠TPQ ...(1) (In a triangle, equal sides have equal angles opposite to them)

∠TQP + ∠TPQ + ∠PTQ = 180º (Angle sum property)

∴ 2 ∠TPQ + ∠PTQ = 180º (Using(1))

⇒ ∠PTQ = 180º – 2 ∠TPQ ...(1)

Similar questions