Two tangents TP and TQ are drawn to a circle with O from an external point T. Prove that angle PTQ=2 angle OPQ.
Answers
Answered by
1
We know that, the lengths of tangents drawn from an external point to a circle are equal.
∴ TP = TQ
In ΔTPQ,
TP = TQ
⇒ ∠TQP = ∠TPQ ...(1) (In a triangle, equal sides have equal angles opposite to them)
∠TQP + ∠TPQ + ∠PTQ = 180º (Angle sum property)
∴ 2 ∠TPQ + ∠PTQ = 180º (Using(1))
⇒ ∠PTQ = 180º – 2 ∠TPQ ...(1)
Similar questions