Math, asked by Yougesh8768, 9 months ago

Two tanks are of the same capacity. The dimensions of the first tank are 32 cm, 18 cm and 7 cm. The second tank has the square base with depth 7 cm. Find the side of the square base.

Answers

Answered by Brâiñlynêha
5

\huge\mathbb{\underline{SOLUTION:-}}

\bold{Given:-}\begin{cases}\sf{Dimensions\:of\:Two\: tank}\\ \sf{Tank\:1=>l=32cm\:,b=18cm\:,h=7cm}\\ \sf{Tank_2:- height=7cm}\end{cases}

First find the volume of 1st tank because the volume of both tanks are equal

\boxed{\sf{Volume\:of\: cuboid=l\times b\times h}}

\bf\underline{\underline{According\:To\: Question:-}}

\sf\implies Volume=32\times 18\times 7\\ \\ \sf\implies Volume=32\times 126\\ \\ \sf\implies Volume=4032cm{}^{3}

\boxed{\sf{Volume\:of\:tank=4032cm{}^{3}}}

  • Now the volume of 2nd tank is also
  • \tt\implies 4032cm{}^{3}

\boxed{\sf{ volume\:of\:tank_1=Volume\:of\:tank_2}}

  • We have to find the side of square base
  • Let the square base be y

\sf\implies Volume=l\times b\times h\\ \\ \sf\implies 4032=y\times 7\\ \\ \sf\implies \cancel{\frac{4032}{7}}=y\\ \\ \sf\implies 576cm{}^{2}=y

  • The square base of 2nd tank is \sf 576cm{}^{2}

  • Now we have to find the side of square base

\sf\underline{\underline{Area\:of\:square=side{}^{2}}}

\sf\implies side=\sqrt{576cm{}^{2}}\\ \\ \sf\implies side=24cm

  • Side of square base =24cm

\boxed{\mathfrak{\purple{Side\:of\:sqiare\:base=24cm}}}

#BAL

#answerwithquality

Similar questions