Math, asked by shreyashbhoyar111, 4 months ago

Two taps together can fill a tank completely in 3 1/13minutes. The smaller 13

tap takes 3 minutes more than the bigger tap to fill the tank. How much time does each tap take to fill the tank completely ?​

Answers

Answered by Anonymous
143

Given :-

  • Two taps together can fill tank completely in 3 1/13 minutes.
  • The smaller tap takes 3 minutes more than the bigger tap to fill the tank.

To Find :-

  • How much time does each tap take to fill the tank completely?

Solution :-

  • Let the Capacity of the tank to be filled be A and the time taken by the Bigger tap to fill the Tank be B minutes. As per question, smaller tap takes 3 minutes more than bigger tap to fill the tank.Therefore, Time taken by the smaller tap to fill the tank = (B + 3) minutes.

In One Minute:-

  • The Bigger Tap fills the Tank by

\sf :\implies \dfrac{A}{B}

  • The Smaller Tap fills the Tank by

\sf :\implies \dfrac{A}{B + 3}

Hence, the two taps fill the Tank by :-

\mathsf{\implies \bigg(\dfrac{A}{B} + \dfrac{A}{B + 3}\bigg)}\\

⠀⠀⠀⠀⠀\small\underline{\pmb{\sf According \: to \: the \: question  :-}}\\

\pink{\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \dfrac{40}{13}\bigg(\dfrac{A}{B} + \dfrac{A}{B + 3}\bigg) = A}}\\

\mathsf{\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \dfrac{40}{13}\bigg(\dfrac{1}{B} + \dfrac{1}{B + 3}\bigg) = 1}\\

\mathsf{\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \dfrac{40}{13}\bigg(\dfrac{B + 3 + B}{B(B + 3)}\bigg) = 1}\\

\mathsf{\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies 40(2B + 3) = 13(B^2 + 3B)}\\

\mathsf{\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies 13B^2 + 39B = 80B + 120}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \mathsf{13B^2 - 41B - 120 = 0}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \mathsf{13B^2 - 65B + 24B - 120 = 0}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \mathsf{13B(B - 5) + 24(B - 5) = 0}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies \mathsf{(B - 5)(13B + 24) = 0}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\pink{\mathsf{\implies B = 5\;\;\;(or)\;\;\;B = \dfrac{-24}{13}}}\\

(As time cannot be negative)

 \sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies{\underline{\boxed{\frak{\pink{B =5}}}}}\:\bigstar\\\\

\therefore\:\underline{\textsf{Time taken by Bigger tap = \textbf{5 minutes }}}.\\\\

\dag\underline{\sf{\sf  Time \:  taken\:  by\:  Smaller\:  tap:- }}

\sf:\implies B+3 = 5+3 \\

 \sf:\implies  \boxed{ \sf Time\:  taken  = \pink{\pmb {8 \: minutes .}}}\\

Similar questions