Math, asked by skarora, 1 year ago

Two taps together can fill a tank in 75/8 hours.the tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can seperately fill the tank.

Answers

Answered by kvnmurty
6
Tank capacity = V  

Tap 1  filling duration = T   =>  flow rate = V/T
Tap 2 filling duration = T+10  =>  flow rate = V/(T+10)

When two taps are filling together, flow rate =  V (1/T  + 1/(T+10) )
            = V * (2 T+10) / (T² +10 T) 
      So     Time to fill tank = (T²+10T) / (2T+10)  = 75/8

       =>  8T² + 80 T = 150 T + 750
          
             8 T² - 70 T - 750 = 0

             4 T² - 35 T - 375 = 0
 
              T = [ 35 +- √(35² + 6000) ] / 8

            T = 15 hours     The bigger tap
           Smaller tap  takes 25  hours  to fill.


skarora: thank you. i was stuck in this ques from last three days. you help me alot. really thank u
kvnmurty: click on thank you link . u are welcom
Answered by Viraoop
0

Answer:

Step-by-step explanation:

Tank capacity = V  

Tap 1  filling duration = T   =>  flow rate = V/T

Tap 2 filling duration = T+10  =>  flow rate = V/(T+10)

When two taps are filling together, flow rate =  V (1/T  + 1/(T+10) )

            = V * (2 T+10) / (T² +10 T) 

      So     Time to fill tank = (T²+10T) / (2T+10)  = 75/8

       =>  8T² + 80 T = 150 T + 750

          

             8 T² - 70 T - 750 = 0

             4 T² - 35 T - 375 = 0

 

              T = [ 35 +- √(35² + 6000) ] / 8

            T = 15 hours     The bigger tap

           Smaller tap  takes 25  hours  to fill

Similar questions