Physics, asked by apsagam004, 8 months ago

TWO TRAINS 90m and 120mm in length are running opposite directions on parallel track with velocities 72km/h and 36km/h. find time at which they cross each other​

Answers

Answered by BrainlyIAS
27

Given : ( Correction )

Two trains 90m and 120m in length are running opposite directions on parallel track with velocities 72 km/h and 36 km/h

To Find :

Time to completely cross

Formula Applied :

\sf \bigstar\ \; \pink{Speed=\dfrac{Distance}{Time}}

Solution :

Answer will be easy when you draw diagram for whole situation .

Distance = Length of train 1 + Length of train 2

               = 90 m + 120 m

               = 210 m

Relative speed = Speed of train 1 + Speed of train 2

                         =  72 km/h + 36 km/h

                         = 20 m/s + 10 m/s

                         = 30 m/s

\sf Speed=\dfrac{Distance}{Time}\\\\\to \sf 30=\dfrac{210}{Time}\\\\\to \sf \green{Time=7\ s}\ \; \bigstar

So , It takes 7 s to cross both trains each other

Attachments:
Answered by Anonymous
5

Answer:

\tt {\pink{Given}}\begin{cases} \sf{\green{Length \:  of \:  1^{st} \:  train =90  \: m}}\\ \sf{\blue{Length \:  of \:  2^{nd}  \: train=120  \: m}}\\ \sf{\orange{Speed \:  of \:  1^{st} \:  train=72  \: km/hr}}\\ \sf{\red{Speed  \: of  \: 2^{nd} \:  train=36 \:  km/hr}}\end{cases}

_____________________

\dashrightarrow\:\: \sf Speed = \dfrac{Distance}{Time} \\  \\  \\

\dashrightarrow\:\: \sf 72 + 36 = \dfrac{120 + 90}{Time} \\  \\  \\

\dashrightarrow\:\: \sf 108  \times  \dfrac{5}{18} = \dfrac{210}{Time} \\  \\  \\

\dashrightarrow\:\: \sf 30= \dfrac{210}{Time} \\  \\  \\

\dashrightarrow\:\: \sf Time = \dfrac{210}{30} \\  \\  \\

\dashrightarrow\:\: \underline{ \boxed{ \sf Time = 7 \: seconds}} \\  \\

\therefore\underline{\textsf{ The time taken by two trains to cross each other is \textbf{7 seconds}}}. \\

Similar questions