Math, asked by JackAndJinne, 3 months ago

Two trains, can travel 15 km/hour faster than the other leave the same station at the same time , one travelling east and other west. at the end of 6 hours they are there are 570 km apart what is the speed of Train.​

Answers

Answered by tora17
6

Answer:

hey mate

Speed of slower train=x

Speed of faster train =x+15  

6(x+x+15)=570

so distance will be km.

divide by 6 and collect terms  

(2x+15)=95

subtract 15 from both sides

2x=80

divide by 2

x=40km/h (slower)

x+15=55 km/h (faster)  

6 hours

slower train 6×40=240 km

faster train 6×55=330

Total is sum= 570.

hope it helps: )

Step-by-step explanation:

Answered by thebrainlykapil
156

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • Two trains, can travel 15 km/hour faster than the other leave the same station at the same time , one travelling east and other west. at the end of 6 hours they are there are 570 km apart what is the speed of Train.

 \\  \\  \\  \\  \\

\large\underline{ \underline{ \sf \maltese{ \: To \: Find :- }}}

  • Speed of both trains !

 \\  \\  \\  \\  \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Let the speed of the slower train be\sf\green{\: x\: km/hour}
  • Then the speed of the faster train will be\sf\green{\:( x\:+\:15\:) km/hour}

 \\  \\  \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\red{\boxed{ \sf \blue{ Both\: train\: travel\: in \:opposite\: direction\:  for\:\sf\green{\: 6 \: hours} }}}

The distance travelled by slower train = \blue{\fbox\orange{6x\: km }}

The distance travelled by Faster train = \blue{\fbox\orange{6(x\:+15) km }}

\begin{gathered}\begin{gathered}\underline{\boldsymbol{According\:\: to\: \:the\:\: Question :}} \\\end{gathered}\end{gathered}

 \quad {:} \longrightarrow \sf{\sf{6x \:  +  \: 6(x \:  +  \: 15) \:  =  \: 570  }}

\quad {:} \longrightarrow \sf{\sf{6x \:  +  \: 6x \:  +  \: 90 \:  =  \: 570}}

\qquad \quad {:}\longrightarrow\sf{\sf{12x \:  +  \: 90 \:  =  \: 570 }}

\qquad \quad {:}\longrightarrow\sf{\sf{12x \: </p><p> =  \: 570\:-\:90 }}

\qquad \quad {:}\longrightarrow\sf{\sf{12x \: </p><p> =  \: 480}}

\qquad \quad {:}\longrightarrow\sf{\sf{x \: </p><p> =  \:   \cancel \frac{480}{12} }}

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 40  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Speed \: of \: Slow \: Train \: = \underline {\underline{ 40km/h}}}\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Speed \: of \: Fast \: Train \: = \underline {\underline{ 55km/h}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions