Physics, asked by yaduvarman, 1 year ago

two trains each of length 100m are travelling in opposite direction with speed 15m/s and 25m/s.The time taken for crossing?

Answers

Answered by BrainlyConqueror0901
31

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Time\:taken=</p><p>2.5\:sec}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about two trains each of length 100m are travelling in opposite direction with speed 15m/s and 25m/s.

• We have to find the time taken for crossing.

 \underline \bold{Given : } \\  \implies Distance(s) = 100 \: m \\  \\  \implies Velocity \: of \: train \: A = 15 \: m/s \\  \\  \implies Velocity \: of \: train \: B = 25\: m/s \\  \\\underline \bold{To \: Find : }  \\ \implies Time \: taken \: to \: cross = ?

• According to given question :

 \bold{Solving \: by \: Relative \: motion : } \\ \\    \bold{Assume \:train \: A \: in \: rest}  \\  \implies Initial \: velocity  = 0 \\  \\ \bold{According \: to \: Relative \: motion} \\ \implies  Velocity \: of \: train \: B= 25+ 15 \\  \\   \bold{\implies Velocity \: of \: train \: B = 40\: m/s} \\  \\ \bold{For \: finding \: time : }  \\  \implies Time =  \frac{Distance}{Speed}   \\  \\  \implies Time =   \frac{  \cancel{100}}{ \cancel{40}}  \\  \\   \bold{\implies Time = 2.5 \: sec} \\  \\  \bold{Alternate\: method : } \\  \\  \bold{For \: train \: A} \\  \implies s = ut +  \frac{1}{2} a {t}^{2}  \\  \\  \implies x = 15 \times t +  \frac{1}{2}  \times 0 \times  {t}^{2}  \\  \\  \implies x = 15t  -  -  -  -  -  (1) \\  \\   \bold{For \: train \: B} \\  \implies s = ut +  \frac{1}{2} a {t}^{2}  \\  \\  \implies 100 - x = 25 \times t + 0  -  -  -  -  - (2)\\  \\ \bold{Putting \: value \: of \: x \: in \:  (2)} \\  \implies 100 - 15t = 25t \\  \\  \implies 100 = 40t \\  \\  \implies t =  \frac{ \cancel{100}}{ \cancel{40}}  \\  \\   \bold{\implies t = 2.5 \: sec}

Answered by Anonymous
16

Answer:

Time taken=2.5 sec

Step-by-step explanation :

given:

Distance=100 m

Velocity of train A=15 m/s

Velocity of train B= 25 m/s

For train A--

Let distance travelled x m.

Using third eqn of of motion:

 \to s = ut +  \frac{1}{2} a {t}^{2}  \\  \\  \to x = 15t +  \frac{1}{2}  {at}^{2}  -  -  -  -  - (1)

For train B--

Using third eqn of of motion:

 \to s = ut +  \frac{1}{2}  {at}^{2}  \\  \\  \to 100 - x = 25t +  \frac{1}{2}  {at}^{2}  -  -  -  -  - (2) \\  \\   \bold{substituting \: value \: of \: x \: in \: eqn \: (2)} \\  \\  \to 100 - 15t +  \frac{1}{2}  {at}^{2}  = 25t +  \frac{1}{2}  {at}^{2}  \\  \\   \to 100 = 25t + 15t \\  \\  \to 40t = 100 \\  \\  \to t =  \frac{100}{40}  \\  \\  \to t = 2.5 \: sec

Similar questions