Physics, asked by Amritha6576, 9 months ago

Two unequal masses m, and m, are connected
by a string going over a clamped light smooth
pulley as shown in figure. m1= 3 kg and m2 = 6
kg. The system is released from rest. (a) Find
the distance travelled by the first block in the
first two seconds. (b) Find the tension in the
string. (c) Find the force exerted by the clamp
on the pulley. (g = 10 m/s)​

Attachments:

Answers

Answered by BrainlyConqueror0901
12

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance\:travelled=\frac{20}{3}\:m}}}\\

\green{\tt{\therefore{Tension\:in\:string=40\:N}}}\\

\green{\tt{\therefore{Force\:exerted\:by\:clamp\:on\:pulley=80\:N}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  m_{1} = 3 \: kg \\  \\ \tt:  \implies  m_{2} = 6 \: kg \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Distance \: travelled \: by \: first  \: block  \: in \: first \: two \: second= ? \\ \\  \tt:  \implies Tension \: in \: the \: string = ?  \\  \\  \tt:  \implies Force \: exerted \: by \: the \: clamp \: on \: the \: pulley = ?

• According to given question :

 \bold{For \: finding \: distance \: travelled} \\  \tt:  \implies  m_{2} g - T=  m_{2}a -  -  -  -  - (1) \\  \\  \tt:  \implies T -  m_{1}g =  m_{1}a -  -  -  -  - (2) \\  \\  \circ \:  \text{Adding \: (1) \: and \: (2)} \\  \tt:  \implies  m_{2}g - m_{1}g = (m_{1} + m_{2})a \\  \\  \tt:  \implies a =  \frac{(m_{2}- m_{1})g}{ m_{1} + m_{2} }  \\  \\  \text{Putting \: given \: values} \\ \tt:   \implies a =  \frac{6 - 3}{3+6}  \times 10 \\  \\  \tt:  \implies a =  \frac{10}{3}  \:m/{s}^{2}  \\  \\  \bold{From \: second \: eqn \: of \: motion} \\  \tt:  \implies s = ut +  \frac{1}{2} a {t}^{2}  \\  \\  \tt:  \implies s = 0 \times 2 +  \frac{1}{2}  \times  \frac{10}{3}   \times 2^{2}  \\  \\   \green{\tt:  \implies s =  \frac{20}{3}  \: m} \\  \\  \bold{For \: Tension \: in \: the \: string} \\  \tt:  \implies T-  m_{1}g = m_{1}a \\  \\  \tt:  \implies T - 3 \times 10 = 3 \times  \frac{10}{3}  \\  \\  \tt:  \implies T= 10 + 30 \\  \\   \green{\tt:  \implies T = 40 \: N}\\  \\  \bold{Force \: exerted \: by \: clamp \: on \: pulley}\\   \tt:  \implies  Force = 2T \\  \\ \tt:  \implies  Force  = 2 \times 40 \\  \\  \green{\tt:  \implies  Force  = 80 \: N}


nirman95: Awesomeness overloaded ❤️
BrainlyConqueror0901: thnx bro : )
Similar questions