Two vectors acting in opposite directions have a resultant of 10 units. If they are at right angles to each other then the resultant is 50 units. Calculate the magnitude of two vectors .
Answers
Answer:
Magnitude of the two vectors = 40 units and 30 units
Explanation:
Given that,
Two vectors acting in opposite directions
so,
angle between the two vectors = 180°
given resultant in this condition = 10 units.
let the two vectors a^-> and b^->
a^-> + b^-> = a² + b² + 2abcosθ
a² + b² + 2abcos 180° =10²
a² + b² + 2ab(-1) = 10²
a² + b² - 2ab = 10²
(a - b)² = 10²
a - b = 10 ...(1)
now,
also given that,
the two vectors are at right angles to each other
now in this condition
θ = 90°
and given resultant in this condition = 50 units,
50² = a² + b² + 2abcos 90°
a² + b² + 2ab(0) = 50²
a² + b² = 2500
a² + b² - 2ab + 2ab = 2500
(a - b)² + 2ab = 2500
from (1)
a - b = 10
10² + 2ab = 2500
100 + 2ab = 2500
2ab = 2500 - 100
2ab = 2400
ab = 2400/2
ab = 1200 ....(2)
from equation (1)
a - b = 10
a = b + 10 ...(3)
putting the value of a in (2)
ab = 1200
(b + 10)b = 1200
b² + 10b - 1200 = 0
b² - 30b + 40b - 1200 = 0
b(b - 30) + 40(b - 30) = 0
(b - 30) (b + 40)
b = 30, -40
since,
magnitude can't be negative
so,
b = 30
now,
putting the value of b on (3)
a = b + 10
a = 30 + 10
a = 40
b = 30
so,
Magnitude of the two vectors
= 40 units and 30 units
» Two vectors acting in opposite directions have a resultant of 10 units.
Means the angle between the two vectors is 180°.
• Let one vector be A and another vector be B.
According to triangles law..
=> A² + B² + 2AB cos Ø = (10)²
Here Ø = 180°
=> A² + B² + 2AB cos 180° = 100
We know that cos 180° = (-1)
=> A² + B² + 2AB (-1) = 100
=> A² + B² - 2AB = 100
(A - B)² = A² + B² - 2AB
=> (A - B)² = 100
=> A - B = √100
=> A - B = 10 _______ (eq 1)
______________________________
» If they are at right angles to each other then the resultant is 50 units.
Now the vectors are right angles to each other. Means the angle between them is 90°.
=> A² + B² + 2AB cos 90° = (50)²
We know that cos 90° = 0
=> A² + B² + 2AB (0) = 2500
=> A² + B² = 2500
=> A² + B² - 2AB + 2AB = 2500
(A - B)² = A² + B² - 2AB
=> (A - B)² + 2AB = 2500
=> (10)² + 2AB = 2500
=> 100 + 2AB = 2500
=> 2AB = 2400
=> AB = 1200
=> A = _____ (eq 2)
• Put value of B in (eq 1)
=> - B = 10
=> = 10
=> 1200 - B² = 10B
=> B² + 10B - 1200 = 0
=> B² + 40B - 30B - 1200 = 0
=> B(B + 40) - 30(N + 40) = 0
=> (B - 30) (B + 40) = 0
• B - 30 = 0
=> B = 30
• B + 40 = 0
=> B = - 40 (neglected)
Put value of B in (eq 2)
=> A =
=> A = 40
________________________________
• We have to fimd the magnitude kd the two vectors. (Means A and B)
From above calculations we have A = 40 and B = 30
________________________________
__________ [ANSWER]
________________________________