Math, asked by arshiya78, 1 year ago

Two vectors are given by A vector=-2i+j-3k and B vector =5i+3j-2k. If 3A vector +2B vector-C vector =0 then third vector is:

Answers

Answered by erinna
21

Given:

\vec{A}=-2i+j-3k

\vec{B}=5i+3j-2k

3\vec{A}+2\vec{B}-\vec{C}=0

To find:

The third vector, i.e., \vec{C}.

Solution:

Let \vec{C}=ai+bj+ck.

We have,

3\vec{A}+2\vec{B}-\vec{C}=0

3(-2i+j-3k)+2(5i+3j-2k)-(ai+bj+ck)=0i+0j+0k

-6i+3j-9k+10i+6j-4k-ai-bj-ck=0i+0j+0k

(-6+10-a)i+(3+6-b)j+(-9-4-c)k=0i+0j+0k

(4-a)i+(9-b)j+(-13-c)k=0i+0j+0k

On comparing both sides, we get

4-a=0\Rightarrow a=4

9-b=0\Rightarrow b=9

-13-c=0\Rightarrow c=-13

Now,

\vec{C}=ai+bj+ck

\vec{C}=4i+9j+(-13)k

\vec{C}=4i+9j-13k

Therefore, the third vector is \vec{C}=4i+9j-13k.

Answered by anushree13122005
1

hope this attachment is helpful to you!

Attachments:
Similar questions