Math, asked by piyush11082003, 9 months ago


Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between
them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.

Answers

Answered by Anonymous
7

Solution:-

  :  \implies   \sf \: magnitude \: of \:  \vec{a} \:  |a|  = 3unit \:

 :  \implies   \sf \: magnitude \: of \:  \vec{b} \:  |b|  = 4unit \:

 \sf \: \to formula

  \boxed{\sf \: R =  \sqrt{ {A }^{2}  +  {B}^{2} + 2A B \cos \theta  } }

Case :- 1 R = 1 unit

A = 3 unit and B = 4 unit

Using this

\sf \: R =  \sqrt{ {A }^{2}  +  {B}^{2} + 2A B \cos \theta  }

\sf \: 1 =  \sqrt{ {3}^{2}  +  {4}^{2} + 2 \times 3  \times 4 \cos \theta  }

\sf \: 1 =  {9}^{}  +  {16}^{} + 24 \cos \theta

\sf \: 1 =  {25}^{}    {}^{} + 24 \cos \theta

\sf \: 1  - 25=  {}^{}    {}^{}  24 \cos \theta

\sf \:  - 24=  {}^{}    {}^{}  24 \cos \theta

 \sf \cos \theta  =  - 1

 \theta \:  =  180 \degree

Case :- 2 R = 5 unit

Case :- 2 R = 5 unit A = 3 unit and B = 4 unit

Case :- 2 R = 5 unit A = 3 unit and B = 4 unit Using this

\sf \: R =  \sqrt{ {A }^{2}  +  {B}^{2} + 2A B \cos \theta  }

\sf \: 5 =  \sqrt{ {3}^{2}  +  {4}^{2} + 2 \times 3  \times 4 \cos \theta  }

\sf \: 25=  {9}^{}  +  {16}^{} + 24 \cos \theta

 \sf\: 25 = 25 + 24 \cos \theta

 \sf0 = 24 \cos \theta

  \cos \theta = 0

 \rm \:  \theta =  90  \degree

Case :- 3 R = 7 unit

unit A = 3 unit and B = 4 unit

unit A = 3 unit and B = 4 unit Using this

\sf \: R =  \sqrt{ {A }^{2}  +  {B}^{2} + 2A B \cos \theta  }

\sf \: 7 =  \sqrt{ {3}^{2}  +  {4}^{2} + 2 \times 3  \times 4 \cos \theta  }

\sf \: 49=  {9}^{}  +  {16}^{} + 24 \cos \theta

 \sf \: 49 = 25 + 24 \cos \theta

 \sf \: 24 = 24 \cos \theta

 \cos\theta = 1

 \theta = 0 \degree


Anonymous: Awesome ♥️
Answered by Anonymous
0

Answer:

Solution:-</p><p></p><p>: \implies \sf \: magnitude \: of \: \vec{a} \: |a| = 3unit \::⟹magnitudeofa∣a∣=3unit</p><p></p><p>: \implies \sf \: magnitude \: of \: \vec{b} \: |b| = 4unit \::⟹magnitudeofb∣b∣=4unit</p><p></p><p>\sf \: \to formula→formula</p><p></p><p>\boxed{\sf \: R = \sqrt{ {A }^{2} + {B}^{2} + 2A B \cos \theta } }R=A2+B2+2ABcosθ</p><p></p><p>Case :- 1 R = 1 unit</p><p></p><p>A = 3 unit and B = 4 unit</p><p></p><p>Using this</p><p></p><p>\sf \: R = \sqrt{ {A }^{2} + {B}^{2} + 2A B \cos \theta }R=A2+B2+2ABcosθ</p><p></p><p>\sf \: 1 = \sqrt{ {3}^{2} + {4}^{2} + 2 \times 3 \times 4 \cos \theta }1=32+42+2×3×4cosθ</p><p></p><p>\sf \: 1 = {9}^{} + {16}^{} + 24 \cos \theta1=9+16+24cosθ</p><p></p><p>\sf \: 1 = {25}^{} {}^{} + 24 \cos \theta1=25+24cosθ</p><p></p><p>\sf \: 1 - 25= {}^{} {}^{} 24 \cos \theta1−25=24cosθ</p><p></p><p>\sf \: - 24= {}^{} {}^{} 24 \cos \theta−24=24cosθ</p><p></p><p>\sf \cos \theta = - 1cosθ=−1</p><p></p><p>\theta \: = 180 \degreeθ=180°</p><p></p><p>Case :- 2 R = 5 unit</p><p></p><p>Case :- 2 R = 5 unit A = 3 unit and B = 4 unit</p><p></p><p>Case :- 2 R = 5 unit A = 3 unit and B = 4 unit Using this</p><p></p><p>\sf \: R = \sqrt{ {A }^{2} + {B}^{2} + 2A B \cos \theta }R=A2+B2+2ABcosθ</p><p></p><p>\sf \: 5 = \sqrt{ {3}^{2} + {4}^{2} + 2 \times 3 \times 4 \cos \theta }5=32+42+2×3×4cosθ</p><p></p><p>\sf \: 25= {9}^{} + {16}^{} + 24 \cos \theta25=9+16+24cosθ</p><p></p><p>\sf\: 25 = 25 + 24 \cos \theta25=25+24cosθ</p><p></p><p>\sf0 = 24 \cos \theta0=24cosθ</p><p></p><p>\cos \theta = 0cosθ=0</p><p></p><p>\rm \: \theta = 90 \degreeθ=90°</p><p></p><p>Case :- 3 R = 7 unit</p><p></p><p>unit A = 3 unit and B = 4 unit</p><p></p><p>unit A = 3 unit and B = 4 unit Using this</p><p></p><p>\sf \: R = \sqrt{ {A }^{2} + {B}^{2} + 2A B \cos \theta }R=A2+B2+2ABcosθ</p><p></p><p>\sf \: 7 = \sqrt{ {3}^{2} + {4}^{2} + 2 \times 3 \times 4 \cos \theta }7=32+42+2×3×4cosθ</p><p></p><p>\sf \: 49= {9}^{} + {16}^{} + 24 \cos \theta49=9+16+24cosθ</p><p></p><p>\sf \: 49 = 25 + 24 \cos \theta49=25+24cosθ</p><p></p><p>\sf \: 24 = 24 \cos \theta24=24cosθ</p><p></p><p>\cos\theta = 1cosθ=1</p><p></p><p>\theta = 0 \degreeθ=0°</p><p></p><p>

Similar questions