Physics, asked by AdorableMe, 10 months ago

Two vectors \vec{a}\ and\ \vec{b} are such that |\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|. What is the angle between \vec{a}\ and\ \vec{b}?

Answers

Answered by Saby123
3

</p><p>\tt{\huge{\pink{Hello!!! }}}

 \tt{ \orange{ \phi \:  =  \: 90 °\: }}

Attachments:
Answered by SweetestBitter
4

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star ANSWER ::}}}\mid}}}\end{gathered}

Given :-

 \bold{➪  \: |\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|}

To Find :-

 \bold{➪ \: Angle \: between \: \vec{a}\ and\ \vec{b}}

Solution :-

 |\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \\ \\   \dag  \: \underline {Squaring \: on \: both \: sides : } \\ |\vec{a}+\vec{b}| {}^{2} =|\vec{a}-\vec{b}| {}^{2}  \\  \\ |\vec{a}| {}^{2}  + |\vec{b}| {}^{2}  + 2 \: \vec{a} \: \vec{b}  = |\vec{a}| {}^{2}  + |\vec{b}| {}^{2}   -  2 \: \vec{a} \: \vec{b}  \\  \\ 2 \: \vec{a} \: \vec{b} = -  2 \: \vec{a} \: \vec{b}  \\  \\ 4 \: \vec{a} \: \vec{b}  = 0 \\  \\ \vec{a} \: \vec{b}  = 0 \\  \\   \large \boxed{ \bold{\therefore \: \vec{a} \:  is \: perpendicular \: to \:  \vec{b}}} \\  \\  \large \boxed{ \bold{\star \:  \theta = 90 \degree}}

@SweetestBitter

Attachments:
Similar questions