Two vertices of an equilateral triangle are (0,0) and (3 ,root 3) then find the vertices of the third vertice
Answers
Answered by
33
SOLUTION:-
O (0,0) & A (3,√3) be the given points and let B (x,y) be the third vertex of equilateral ∆OAB.
⟹ OA = OB = AB
⟹ OA² = OB² = AB²
So,
OA² = (3-0)²+(√3-0)² = 12
OB² = x²+y²
AB² = (x-3)²+(y-√3)² = x²+y²-6x-2√3y+12
_____________________
OA² = OB² = AB²
⟹ OA² = OB² & OB² = AB²
⟹ x²+y² = 12
And also,
x²+y² = x²+y²-6x-2√3y+12
⟹ x²+y² = 12 & 6x+2√3y = 12
⟹ x²+y² = 12 & 3x+√3y = 6
⟹ x²+(6-3x/√3)² = 12
⟹ 3x²+(6-3x)² = 36
⟹ 12x²-36x = 0
⟹ x = 0,3.
_____________________
Therefore,
x = 0 ⇒ √3y = 6 =6/√3
⇒ 2√3 [putting x = 0 in 3x +√3y = 6]
x = 3 ⇒ 9+√3y = 6
⇒ y = 6-9/√3
⇒ -√3 [putting x = 3 in 3x +√3y = 6]
_____________________
Hence, the co-ordinates of the third vertex B are,
➪(0,2√3) or (3,-√3).
Attachments:
Similar questions