Math, asked by advarunparasher, 9 months ago

Two vertices of an isosceles triangle are (−2, 5) and (4, −1). Find the third vertex if the length of equal sides is
3 root 2 units.​

Answers

Answered by cmovie066
0

Step-by-step explanation:

Let ΔABC be the isosceles triangle, the third vertex be C(a,b).

and A(2,0) and B(2,5)

Let AC and BC be equal sides of the triangle

By distance formula we have,

D=

(x

2

−x

1

)+(y

2

−y

1

)

∴AB=

(2−2)

2

+(5−0)

2

=

25

=5

Now,

AC=3 [length of equal sides=3 ]

AC

2

=3

2

=9..........(a)

but by distance formula,

AC

2

=

(a−2)

2

+b

2

...........(b)

Combining (a) and (b)

⇒(a−2)

2

+b

2

=9

⇒a

2

+4−4a+b

2

=9

⇒a

2

+b

2

−4a=5 ---------- (1)

Consider BC

BC

2

=

(a−2)

2

+(b−5)

2

but BC=3

∴(a−2)

2

+(b−5)

2

=9

⇒a

2

+4−4a+b

2

+25−10b=9

⇒a

2

+b

2

−4a−10b+20=0 ------- (2)

⇒−10b+20+5=0 ---------(from 1 )

⇒10b=25

⇒b=

10

25

=

2

5

Now, a

2

+

4

25

−4a=5

⇒a

2

−4a=

4

−5

⇒a

2

−4a+

4

5

=0

⇒a=

2

16−4∗1∗

4

5

=

2

11

=

2

2+

11

,

2

2−

11

∴ Coordinate of third vertex (a,b) = (

2

2+

11

,

2

5

) and (

2

2−

11

,

2

5

)

Answered by anjalibalajee2009
0

Answer:

PA= PB= 3

By Distance Formula

√(x1-x2)² + (y1- y²)²

PA= PB

√ (x-2)² +(y-0)² = √(x-2)²+(y-5)²

Squaring both sides

(x-2)² +y² = (x-2)²+(y-5)²

(x-2)² -(x-2)² +y² =( y-5)²

y² = y²+5²-2×y×5

[ (a-b)² = a²+b²-2ab]

y² = y²+25-10y

10y = 25

y=25/10= 5/2

y= 5/2

√ (x-2)² +y² = 3

Squaring both sides

(x-2)² +y² = 9

[ (a-b)² = a²+b²-2ab]

x²+2²-2×x×2+y²= 9

x²+4-4x +y² =9

x²+4-9-4x+y²=0

x²-5-4x+y²=0

Put the value of y

x²- 4x-5+(5/2)²=0

x²-4x-5+25/4=0

x²-4x (-20+25)/4=0

x²-4x +5/4=0

On Comparing

a= 1, b= -4, c= 5/4

By quadratic Formula

X= -b ±√b²-4ac/ 2a

X= -(-4)±√-4²-4×1×5/4 /2×1

X= 4 ±√16-5/2

X= 4/2 ±√11/2

X= 2 ±√11/2

Hence the third vertex P(x,y)

= (2 ±√11/2, 5/2)

============================°====================================

Hope this will help you..

Similar questions