Math, asked by emiliiii, 6 months ago

Two water taps together can fill a tank in 1 {7/8 } hrs. The tap with longer diameter takes 2 hrs less than the tap with smaller one to fill the tank separately. Find the time in which each tap can fill the tank separately.

Answers

Answered by DearG
0

 \boxed{ \boxed{  \bf {\pink{SOLUTION }}}}

  \rm \: Let  \: the \: time \: taken \: by \: smaller \: tap \: to \: fill \: tank \: completely \:  = x \: hrs

 \rm \: So, \: volume \: of \: tank \: filled \: by \: smaller \: tap \: in \: 1 \: hr =  \frac{1}{x}

 \rm \: Volume \: of \: tank \: filled \: by \: larger \: tap \: in \: 1 \: hr =  \frac{1}{x - 2}

 \rm \: Now, \: time \: taken \: by \: both \: taps \: to \: fill = 1 \frac{7}{8} =  \frac{15}{8} \: hrs

 \rm \: Tank \: filled \: by \: smaller \: tap \: in \:  \frac{15}{8}hrs =  \frac{1}{x} \times  \frac{15}{8} =  \frac{15}{8x}

 \rm \: Tank \: filled \: by \: larger \: tap \: in \:  \frac{15}{8}hrs  =  \frac{1}{x  - 2}\times  \frac{15}{8} =  \frac{15}{8(x - 2)}

 \rm \: Therefore  \: \frac{15}{8x} +  \frac{15}{8(x - 2)}  = 1 \implies \:  \frac{15}{8} \bigg[ \frac{1}{x}  +  \frac{1}{x - 2}  \bigg] = 1

 \implies \:  \rm \:  \frac{2(x - 1)}{ {x}^{2}  - 2x}  =  \frac{8}{15}

 \implies \:  \rm \: 15(x - 1) = 4( {x}^{2}  - 2x)

 \implies \:  \rm \: 23x = 4 {x}^{2} + 15

 \implies \:  \rm \: 4x {}^{2}  - 23x + 15 = 0

 \rm \: x =  \frac{ - ( - 23) \pm \sqrt{( - 23) {}^{2}  - 4.4.15} }{2.4}

 \rm \: x =  \frac{23 \pm \: 17}{8}

 \boxed{ \rm \red{ • Taking \: Positive \: Sign}}

 \rm \: x =  \frac{23 + 17}{8}

 \rm \: x = 5

 \boxed{ \rm \red{• Taking \: Negative \: Sign}}

 \rm \: x =  \frac{23 - 17}{8}

 \rm \: x =  \frac{3}{4}

 \rm \: Taking \: x = 5

 \rm \: Time \: taken \: by \: smaller \: tap = 5 \: hrs

 \rm \: Time \: taken \: by \: large \: tap = x - 2 = 5 - 2 = 3 \: hrs

 \rm \: Taking \: x =  \frac{3}{4}

 \rm \: Time \: taken \: by \: smaller \: tap =  \frac{3}{4}  \: hr

 \rm \: Time \: taken \: by \: large \: tap = x - 2

 \rm =  \frac{3}{4}  - 2 =  \frac{ - 5}{4},  \: its \: not \: solution.

Similar questions