Science, asked by sabnamSultana690, 11 months ago

two waves of frequency n and 2n move with equal speed. the ratio of their wavelength is- (a)1:2 (b)2:1 (c)4:1 (d)None of the above Please step by step explain ​

Answers

Answered by jampanarishivarma
1

Answer:

Sound, like all waves, travels at a certain speed and has the properties of frequency and wavelength. You can observe direct evidence of the speed of sound while watching a fireworks display. The flash of an explosion is seen well before its sound is heard, implying both that sound travels at a finite speed and that it is much slower than light. You can also directly sense the frequency of a sound. Perception of frequency is called pitch. The wavelength of sound is not directly sensed, but indirect evidence is found in the correlation of the size of musical instruments with their pitch. Small instruments, such as a piccolo, typically make high-pitch sounds, while large instruments, such as a tuba, typically make low-pitch sounds. High pitch means small wavelength, and the size of a musical instrument is directly related to the wavelengths of sound it produces. So a small instrument creates short-wavelength sounds. Similar arguments hold that a large instrument creates long-wavelength sounds.

The relationship of the speed of sound, its frequency, and wavelength is the same as for all waves: vw = fλ, where vw is the speed of sound, f is its frequency, and λ is its wavelength. The wavelength of a sound is the distance between adjacent identical parts of a wave—for example, between adjacent compressions as illustrated in Figure 2. The frequency is the same as that of the source and is the number of waves that pass a point per unit time.

A picture of a vibrating tuning fork is shown. The sound wave compressions and rarefactions are shown to emanate from the fork on both the sides as semicircular arcs of alternate bold and dotted lines. The wavelength is marked as the distance between two successive bold arcs. The frequency of the vibrations is shown as f and velocity of the wave represented by v sub w.

Figure 2. A sound wave emanates from a source vibrating at a frequency f, propagates at Vw, and has a wavelength λ.

Table 1 makes it apparent that the speed of sound varies greatly in different media. The speed of sound in a medium is determined by a combination of the medium’s rigidity (or compressibility in gases) and its density. The more rigid (or less compressible) the medium, the faster the speed of sound. This observation is analogous to the fact that the frequency of a simple harmonic motion is directly proportional to the stiffness of the oscillating object. The greater the density of a medium, the slower the speed of sound. This observation is analogous to the fact that the frequency of a simple harmonic motion is inversely proportional to the mass of the oscillating object. The speed of sound in air is low, because air is compressible. Because liquids and solids are relatively rigid and very difficult to compress, the speed of sound in such media is generally greater than in gases.

Table 1. Speed of Sound in Various Media

Medium vw(m/s)

Gases at 0ºC

Air 331

Carbon dioxide 259

Oxygen 316

Helium 965

Hydrogen 1290

Liquids at 20ºC

Ethanol 1160

Mercury 1450

Water, fresh 1480

Sea water 1540

Human tissue 1540

Solids (longitudinal or bulk)

Vulcanized rubber 54

Polyethylene 920

Marble 3810

Glass, Pyrex 5640

Lead 1960

Aluminum 5120

Steel 5960

Earthquakes, essentially sound waves in Earth’s crust, are an interesting example of how the speed of sound depends on the rigidity of the medium. Earthquakes have both longitudinal and transverse components, and these travel at different speeds. The bulk modulus of granite is greater than its shear modulus. For that reason, the speed of longitudinal or pressure waves (P-waves) in earthquakes in granite is significantly higher than the speed of transverse or shear waves (S-waves). Both components of earthquakes travel slower in less rigid material, such as sediments. P-waves have speeds of 4 to 7 km/s, and S-waves correspondingly range in speed from 2 to 5 km/s, both being faster in more rigid material. The P-wave gets progressively farther ahead of the S-wave as they travel through Earth’s crust. The time between the P- and S-waves is routinely used to determine the distance to their source, the epicenter of the earthquake.

Explanation:

Similar questions