Physics, asked by poonamgawarna, 10 months ago

Two wire A and B of the same material have their length in the ratio 1:5 and diameter in the ratio 3:2 if the resistance of the wire B is 180 ohm find the resistance of the wire A​

Answers

Answered by Anonymous
10

Given :

➳ Ratio of length = 1 : 5

➳ Ratio of diameter = 3 : 2

(Ratio of diameter = Ratio of radius)

➳ Resistance of wire B = 180Ω

To Find :

⟶ Ratio of wire A.

SoluTion :

➻ We know that, Resistance of a conductor is directly proportional to the length of conductor and inversely proportional to the area of cross section of conductor.

Mathematically,

\bigstar\:\boxed{\bf{R\propto\:\dfrac{L}{A}}}

Area of cross section = π r²

\implies\tt\:\dfrac{R_A}{R_B}=\dfrac{L_A}{L_B}\times \dfrac{\pi(R_B)^2}{\pi(R_A)^2}

\implies\tt\:\dfrac{R_A}{180}=\dfrac{1}{5}\times \dfrac{(2)^2}{(3)^2}

\implies\tt\:\dfrac{R_A}{180}=\dfrac{4}{45}

\implies\tt\:R_A=\dfrac{180\times 4}{45}

\implies\boxed{\bf{R_A=16\Omega}}

Answered by Anonymous
254

\green{\bold{\underline{\underline{Given}}}}

\bigstar \: \orange{\bold{{{Ratio \:  of  \: length = 1 : 5}}}}

\bigstar \: \red{\bold{{{Ratio  \: of \:  diameter = 3 : 2}}}}

\bigstar \: \blue{\bold{{{Resistance  \: of \:  the \:  wire  \: B = 180Ω}}}}

\green{\bold{\underline{\underline{To  \: Find}}}}

\bigstar \: \pink{\bold{{{The  \: resistance \:  of  \: the \:  wire  \: A}}}} </p><p>

\green{\bold{\underline{\underline{Formula}}}}

\boxed{\bf{R\propto\:\dfrac{L}{A}}}

\green{\bold{\underline{\underline{Solution}}}}

We know that,

★ Area of cross section = π r²

\implies\dfrac{R_A}{R_B}=\dfrac{L_A}{L_B}\times \dfrac{\pi(R_B)^2}{\pi(R_A)^2}</p><p>

\implies\dfrac{R_A}{180}=\dfrac{1}{5}\times \dfrac{(2)^2}{(3)^2}

\implies\dfrac{R_A}{180}=\dfrac{4}{45}

\implies\ R_A=\dfrac{180\times 4}{45}

\implies{\bf{R_A=16\Omega}}

Similar questions