Physics, asked by Anonymous, 7 months ago

Two wires A and B of the same material have their lengths in the ratio 1:2 and cross-section areas in the ratio 2:3.If the resistance of wire A be 12ohm then calculate the resistance of wire B​

Answers

Answered by RISH4BH
107

\large{\underline{\underline{\red{\sf{\hookrightarrow Given :-}}}}}

  • Two wires A and B are of same material.
  • Their ratio of lenght is 1 : 2 .
  • Ratio of their cross - Sectional area is 2 : 3.
  • Resistance of wire A is 12Ω.

\large{\underline{\underline{\red{\sf{\hookrightarrow To\:Find:- }}}}}

  • The resistance of wire B .

\large{\underline{\underline{\red{\sf{\hookrightarrow Formula\:Used:- }}}}}

We know that when length and area are given , we can calculate resistance by using formula ,

\large\pink{\underline{\boxed{\purple{\tt{ \dag \:\: Resistance\:\:=\:\:\rho\:\dfrac{l}{a}}}}}}

✒️ Where ,

  • l is lenght.
  • a is area .
  • \rho is resistivity or specific resistance.

\large{\underline{\underline{\red{\sf{ \hookrightarrow Calculation:-}}}}}

Let us take the ratio of length of two wires be x : 2x .

And , the ratio of their cross - sectional areas be 2y : 3y .

Let us denote ,

  • \tt{R_1\:as\: resistance\: of\:wire\:A.}
  • \tt{R_2\:as\: resistance\: of\:wire\:B.}

Now , Resistance of Wire A :-

\tt:\implies Resistance =\rho\dfrac{l}{a}

\pink{\tt:\longmapsto R_1 = \rho\dfrac{x}{2y} \:\:.............(i)}

Similarly, Resistance of Wire B :-

\tt:\implies Resistance =\rho\dfrac{l}{a}

\pink{\tt:\longmapsto R_2 = \rho\dfrac{2x}{3y} \:\:.............(ii)}

Now divide equⁿ (i) and equⁿ (ii) ,

\tt:\implies \dfrac{R_1}{R_2}=\dfrac{\cancel{\rho}\dfrac{x}{2y}}{\cancel{\rho}\dfrac{2x}{3y}}

\tt:\implies \dfrac{R_1}{R_2}=\dfrac{\cancel{x}\:\:\times\:\:3\cancel{y}}{2\cancel{y}\:\:\times\:\:2\cancel{x}}

\tt:\implies \dfrac{R_1}{R_2}=\dfrac{1\:\:\times\:\:3}{2\:\:\times\:\:2}

\tt:\implies \dfrac{12\Omega}{R_2}=\dfrac{3}{4}

\tt:\implies R_2=\dfrac{\cancel{12}^{4}\times4}{\cancel{3}}

\underline{\boxed{\red{\tt{\longmapsto\:\:R_2\:\:=\:\:16\Omega}}}}

\boxed{\bf{\green{\dag Hence\:the\: resistance\:of\:wire\:B\:is\:16\: \Omega.}}}

Similar questions