Physics, asked by hiteshkumar25, 10 months ago

Two wires are fixed on a sonometer. Their tensions are in the
ratio 8:1, their lengths are in the ratio 36:35, the diameters
are in the ratio 4:1 and densities are in the ratio 1:2. If the
note of the higher pitch has a frequency 360 s', the frequency
of beats produced is
(b) 10 s-
(d) 20 s-
(a) 55
(c) 15 s-​

Answers

Answered by mananmadani53
0

Answer:

your ans is b option hope you like it please follow

Answered by Anonymous
2

The frequency of of beats produced is:

(b) 10 s⁻¹

This can be calculated as follows:

  • We know that, Frequency (η) =  \frac{1}{2l} \sqrt{\frac{T}{m} }

                                                        = \frac{1}{2l} \sqrt{\frac{T}{\pi r^{2} p } }

                                                        = \frac{1}{2lr} \sqrt{\frac{T}{\pi   p } }

  • Also, (η₁/η₂) = (l₂.r₂)/(l₁r₁) \sqrt{\frac{T_{1} }{T_{2} } }  \sqrt{\frac{p_{1} }{p_{2} } }

                            =  (35 x 1/36 x 6) \sqrt{\frac{8 }{1 } }   \sqrt{\frac{2 }{1 } }

                            = (35/36)

  • As per the question, higher frequency (η₂) is 360 s⁻¹.
  • Therefore, η₁ = (35/36) x 360

                              =350

  • Therefore, beat frequency = 360 - 350

                                                     = 10s⁻¹

Similar questions