Math, asked by anitasingh78, 10 months ago

two zeros of a quadratic equation are 1/4 and -1 find the polynomial​

Answers

Answered by BendingReality
20

Answer:

= > 4 x² + 3 x - 1

Step-by-step explanation:

Given :

α = 1 / 4

b = - 1

Sum of zeroes = 1 / 4 + ( - 1 )

α + β = - 3 / 4

Product of zeroes = 1 / 4 × ( - 1 )

α β = - 1 / 4

Required polynomial = x² - ( α + β ) x + α β

  = x² - ( - 3 / 4 ) x + ( - 1 / 4 )

 = x² + 3 / 4 x - 1 / 4

Now dividing by 4 in whole polynomial

= > 4 x² + 3 x - 1

Answered by Anonymous
12

\large{\underline{\underline{\mathfrak{\sf{\red{Answer-}}}}}}

\large{\underline{\boxed{\sf{\green{x^2+\dfrac{3}{4}x-\dfrac{1}{4}}}}}}

\large{\underline{\underline{\mathfrak{\sf{\red{Explanation-}}}}}}

Given zeroes :

  • \sf{\dfrac{1}{4}}
  • -1

To find :

  • Quadratic polynomial

Formula used :

  • x² - Sx + p

\begin{lgathered}\bold{Where} \begin{cases}\sf{\blue{S}\:refers\:to\:sum\:of\:zeroes} \\ \sf{\pink{P}\:refers\:to\:product\:of\:zeroes}\end{cases}\end{lgathered}

Solution :

★ Sum of given zeroes = \sf{\dfrac{1}{4}+(-1)}

\implies Sum of zeroes = \sf{\dfrac{1}{4}-1}

\implies Sum of zeroes = \sf{\dfrac{1-4}{4}}

\implies Sum of zeroes = \sf{-\dfrac{3}{4}}

★ Product of zeroes = \sf{\dfrac{1}{4}×(-1)}

\implies Product of zeroes = \sf{-\dfrac{1}{4}}

\rule{200}3

Now, put the value of sum and product of zeroes in - Sx + P.

\implies x² - \sf{(-\dfrac{3}{4})x} + \sf{(-\dfrac{1}{4})}

We get,

\large{\underline{\boxed{\sf{\green{x^2+\dfrac{3}{4}x-\dfrac{1}{4}}}}}}

Similar questions