Math, asked by FacebookBrainly, 9 months ago

Type the correct answer in the box. In the above triangle, cosA/cosB = ?​

Attachments:

Answers

Answered by Anonymous
5

\boxed{\red{\bold{\underline{{  Answer  \:    with\:  Explanation  \:  :}}}}}

\rule{200}{2}

\displaystyle 1 = \frac{cos∠A}{cos∠B}

\displaystyle \frac{OPPOSITE}</p><p></p><ul><li>{HYPOTENUSE} = sin\:θ \\ \frac{ADJACENT}</li></ul><p></p><p>{HYPOTENUSE} = cos\:θ \\ \frac{OPPOSITE}</p><p></p><p>{ADJACENT} = tan\:θ \\ \frac{HYPOTENUSE}</p><p></p><p>{ADJACENT} = sec\:θ \\ \frac{HYPOTENUSE}</p><p></p><p>{OPPOSITE} = csc\:θ \\ \frac{ADJACENT}</p><p></p><p>{OPPOSITE} = cot\:θ

Since this is a 45°-45°-90° triangle, you will have two IDENTICAL legs and the hypotenuse is the value of the leg multiplied by the square root of 2:

\displaystyle x\sqrt{2} = HYPOTENUSE \\ x = LEGS \\ \\ 4,242640687 ≈ 3\sqrt{2} \\ \\ \frac{3}{4,242640687} ≈ cos∠B \\ \frac{3}{4,242640687} ≈ cos∠A \\ \\ \frac{\frac{3}{4,242640687}}{\frac{3}{4,242640687}} = 1

\rule{200}{2}

\boxed{\bold{\red{Keep\: Asking\: - \: Be \: Brainly}}}\\

Similar questions