u=(1+cosx)(1+cos2x)-sinx sin2x and v=sinx(1+cos2x)+sin2x(1+cosx) find u^2 +v^2=?
Answers
Answered by
0
2(cosx+2cos2x−1)+2sinxcosx.(1+2cosx)−2sinx=0
or 2(2cos2x+cosx−1)+2sinx(2cos2x+cosx−1)=0
2(1+sinx)(cosx+1)(2cosx−1)=0
We have to determine values of x s.t. −π≤x≤π
1+sinx=0 ∴sinx=−1
∴x=2nπ+23π ∴x=−2π,
for n=−1 ∵−π≤x<π
cosx=−1=cosπ ∴cosx=1/2=cos(π/3)
∴x=2nπ±π/3
∴x=π/3, −π/3
Hence the values of x s.t. −π≤x≤π are
−π,−π/2,−π/3,π/3,π.
Answered by
0
Answer:
u^2+v^2=4(1+cosx) (1+cos2x
Similar questions