(u^2+v^2-2uv) (u^2 + v^2 + 2uv) find the product of polynomials
Answers
Answered by
14
Answer: (u² + v² - 2uv)(u² + v² + 2uv) = u⁴ + v⁴ - 2u²v².
Explanation:
(u² + v² - 2uv)(u² + v² + 2uv)
= (u - v)²(u + v)²
{By indentities: a² + b² + 2ab = (a + b)², a² + b² - 2ab = (a - b)².}
= [(u + v)(u - v)]²
{aⁿbⁿ = (ab)ⁿ}
= [u² - v²]²
{As, (a + b)(a - b) = a² - b².}
= (u²)² + (v²)² - 2(u²)(v²)
= u⁴ + v⁴ - 2u²v².
Similar questions
Math,
3 hours ago
Hindi,
3 hours ago
Environmental Sciences,
5 hours ago
Math,
5 hours ago
Math,
8 months ago
Math,
8 months ago
World Languages,
8 months ago