Math, asked by heenananwani82, 5 hours ago

u=2a²xy - 3ax²y-9y³+ x³y + xy³ find maxima and minima point by partial differentiation​

Answers

Answered by prathamesh299
1

Hope it helps.!!!!!!!!

Attachments:
Answered by IICuddleII
60

\huge\mathcal\colorbox{black}{{\color{red}{❥Solution}}}

3x + 2y =  - 4 -  -  -  -  - (1) \\ 2x + 5y = 1 -  -  -  -  - (2)

⌧ Find Point of Intersection of these 2 lines

Do 2×(1)-3×(2)

6x + 4y  =  - 8 -  -  -  -  - (3) \\ 6x + 5y = 3 -  -  -  -  - (4) \\  -  -  -  -  -  -  -  -  -  -  -  -  \\  - 11y =  - 11 \\ y = 1

\bf\red {Substitute in (1) :-}

3x + 2(1) =  - 4 \\  =  > 3x =  - 4 - 2 \\  =  > 3x =  - 6 \\  =  > x =  - 2

.

. . Point of Intersection of the line

3x + 2y + 4 = 0 \: and \: 2x + 5y - 1 = 0 \: is( - 2 \: and \: 1)

y = mx + c

Substitute

x =  - 2 \: amd \: y \:  = 1 \\  \\  =  > 1 =  - 2m + c \\  =  > c = 1 + 2m

.

. .The required equation of straight line is form :-

y = mx + 1 + 2m -  -  -  -  - (5)

⌧ The perpendicular distance (or simply distance ) 'd' of a point P (x1, y1) from Ax+By+C = 0 is given by.

\bf\red {Given :-}

(x1, y1) = ( - 2 , 1) \: andd = 2 \\  \\  =  > (4m +  {2})^{2}  = 2( {m}^{2}  + 1) \\  = > 16 {m}^{2}  + 16m + 4 = 2 {m}^{2}  + 2 \\  =  > 14 {m}^{2}  + 16m + 2 = 0 \\  =  > 7 {m}^{2}  + 8m + 1 = 0

Factories the equation

7 {m}^{2}  + 7m + m + 1 = 0 \\  =  > 7m(m + 1) + 1(m + 1) = 0 \\  =  > m =  - 1 \: and \: m =  \frac{ - 1}{7}

Now substitute m = -1 in (5)

 =  > y = ( - 1)x + 1 + 2( - 1) \\  =  > y = ( - 1)x + 1 + 2( - 1) \\  =  > y =  -  x + 1  - 2 \\ y =  - 1 - x

Similar questions