u+v=sin2x/cosh2y-cos2x find the analytic function f(z) =u+iv
Answers
Answered by
32
Given:
u + v = sin2x / (cosh2y-cos2x)
f(z) = u + iv
To find:
Find the analytic function f(z) = u + iv
Solution:
f(z) = u + iv be any analytic function
∴if(z) = iu + i²v
∵i² = -1
if(z) = iu - v
Now, f(z) + if(z) = u + iv + iu - v
(1 + i)f(z) = (u -v) + i(u + v)
Let, F(z) = U + iV
where F(z) = (1 + i)f(z)
U = u - v
V = u + v
Since, V = u + v = sin2x / (cosh2y-cos2x)
Now,
So, Ψ₂(z , 0) = [δV / δx]₍z , ₀₎
Ψ₂(z , 0) = -cosec²z
And,
Ψ₁(z , 0) = [δV / δy]₍z , ₀₎
Ψ₁(z , 0) = 0
By Milne's Method
F(z) = i cotz + c
∵ F(z) = (1 + i)f(z)
(1 + i)f(z) = i cotz + c
Let c/(1+i) = C'
f(z) = (1/1+i)cotz + C'
f(z) = (i +1 / 2)cotz + C'
Similar questions