Math, asked by sheakharman787, 5 months ago

u =x^2-y^2-Sinyz if y=e^x and z=logx find du/dx​

Answers

Answered by amitnrw
4

Given :  u = x² - y² - sinyz    

y = eˣ  and  z = ln x  

To Find :  du/dx​

Solution:

u = x² - y² - sinyz    

=> du/dx = 2x  - 2y.dy/dx   - Cosyz( y.dz/dx + z.dy/dx)

y = eˣ

=> dy/dx  =  eˣ

z = ln x

=> dz/dx = 1/x

du/dx = 2x  - 2y.dy/dx   - Cosyz( y.dz/dx + z.dy/dx)

=> du/dx = 2x  - 2eˣ.eˣ   - Cos( eˣ. ln x )(  eˣ/x +  ln x .eˣ)

=> du/dx = 2x  - 2e²ˣ    -  Cos( eˣ. ln x )(  1/x +  ln x)eˣ

du/dx = 2x  - 2e²ˣ    -  Cos( eˣ. ln x )(  1/x +  ln x)eˣ

Learn More:

PROBLEM 1:Differentiate the given function f(x) = (√x + a)(3x2 – 5x ...

https://brainly.in/question/28115670

Differentiate : xy log(x+y) = 1 - Brainly.in

https://brainly.in/question/664239

differentiate wrt x cosx . cos2x . cos3x​ - Brainly.in

https://brainly.in/question/8856618

Similar questions