Math, asked by jainhimika1529, 1 year ago

Uaing the laws of set algebra prove that (aub)n(aub')=a

Answers

Answered by MaheswariS
9
  • Answer:

\bf{(A\cup{B})\cap(A\cup{B'})=A}

Step-by-step explanation:

\text{Concept used:}\\\\\text{Distributive law:}

A\cup{(B\cap{C})}=(A\cup{B})\cap(A\cup{C})

\text{Given:}

(A\cup{B})\cap(A\cup{B'})

=A\cup{(B\cap{B'})}\:\:\text{(using distributive law)}

=A\cup{(\emptyset)}

=A\cup{\emptyset}

=A

\implies(A\cup{B})\cap{(A\cup{B'})}=A

Answered by danielmusteata8
0

Answer:

Step-by-step explanation:

Yjgfjgfdd

Similar questions