Math, asked by dhannubisht10, 9 months ago

UI
12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is
60° and the angle of depression of its foot is 45º. Determine the height of the tower,
13. As observed from the top of a 75 m high lighthouse from the sea-level.
level the​

Answers

Answered by Anonymous
14

\sf\blue{Question:}

\sf{From \ the \ top \ of \ 7 \ m \ high \ building,}

\sf{the \ angle \ of \ elevation \ of \ the \ top \ of \ a}

\sf{cable \ tower \ is \ 60° \ and \ the \ angle \ of}

\sf{depression \ of \ it's \ foot \ is \ 45°. \ Determine}

\sf{the \ height \ of \ the \ tower.}

____________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ height \ of \ cable \ tower \ is \ 19.11 \ m}

\sf\orange{Given:}

\sf{\implies{From \ the \ top \ of \ a \ 7 \ m \ high}}

\sf{building, \ the \ angle \ of \ elevation \ of \ the \ top}

\sf{of \ a \ cable \ tower \ is \ 60°}

\sf{\implies{Angle \ of \ depression \ of \ it's }}

\sf{foot \ is \ 45°}

\sf\pink{To \ find:}

\sf{The \ height \ of \ the \ cable \ tower.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ AB \ represent \ building \ and \ CE \ represent}

\sf{the \ tower.}

\sf{\therefore{AB=7 \ m}}

\sf{Angle \ of \ Depression \ is \ 45°}

\sf{\angle \ DAC=\angle \ ACB}

\sf{... Alternate \ angles}

\sf{\therefore{\angle \ DAC=45°}}

\sf{In \ right \ angled \ triangle \ ABC \ \angle \ ABC=90°,}

\sf{tan45°=\frac{AB}{BC}}

\sf{\therefore{1=\frac{7}{BC}}}

\sf{\therefore{BC=7 \ m}}

\sf{In \ quadrilateral \ ABCD,}

\sf{\angle \ ABC=90°...given}

\sf{\angle \ BCD=90°...given}

\sf{\angle \ ADC=90°...AD \ is \ perpendicular \ to \ EC}

\sf{\angle \ DAB=90°... remaining \ angle}

\sf{Also, \ adjacent \ sides \ AB \ and \ BC \ are \ congruent.}

\sf{\therefore{The \ quadrilateral \ ABCD \ is \ square.}}

\sf{\therefore{AB=BC=CD=AD=7 \ m}}

\sf{...all \ sides \ of \ square \ are \ congruent.}

\sf{In \ \triangle \ AED, \angle \ ADE=90°}

\sf{Angle \ of \ elevation=60°}

\sf{\therefore{\angle \ EAD=60°}}

\sf{tan \ 60°=\frac{ED}{AD}}

\sf{\sqrt3=\frac{ED}{7}}

\sf{\therefore{ED=7\sqrt3 \ m}}

\sf{Height \ of \ cable \ tower=CD+ED}

\sf{=7+7\sqrt3}

\sf{=7(1+\sqrt3)}

\sf{=7(1+1.73)}

\sf{=7\times2.73}

\sf{=19.11 \ m}

\sf\purple{\therefore{\tt{The \ height \ of \ cable \ tower \ is \ 19.11 \ m}}}

Attachments:
Similar questions