ule IUNIUWiig uenues :
( 1 ) sec²0-cos² 0 = sin²O (sec² 0 +1)
Answers
Answered by
1
To Prove :
sec²∅ - cos²∅ = tan(sec²∅ + 1)
LHS :
sec²∅ - cos²∅
→ sec²∅ - 1/sec²∅
→ (sec⁴∅ - 1)/sec²∅
→ [(sec²∅ + 1)(sec²∅ - 1)]/sec²∅
→ [(sec²∅ + 1)(1 - cos²∅)]/sec²∅
→ (sec²∅ + 1) × tan²∅/sec²∅
→ sin²∅(1 + sec²∅) → RHS
Hence, Proved
Similar questions