Physics, asked by laya2914sls, 9 months ago

Ultraviolet light of frequency 2×10^15 Hz is incident on a metal of threshold frequency 10^15Hz. Calculate the velocity of photoelectrons emitted. Given mass of electrons=9.1×10^-11 kg.​

Answers

Answered by nirman95
11

Given:

Ultraviolet light of frequency 2×10^15Hz is incident on a metal of threshold frequency 10^15Hz.

To find:

Velocity of the emitted electrons.

Calculation:

Applying Einstein's Equation of Photoelectric Effect:

 KE = h \nu - h\nu_{0}

 =  >  KE = h (\nu - \nu_{0})

 =  >  KE = h  \{(2 \times  {10}^{15}) -  ({10}^{15} ) \}

 =  >  KE = h  \{(2 - 1) \times  {10}^{15} \}

 =  >  KE = h   \times  {10}^{15}

 =  >   \dfrac{1}{2} m {v}^{2}  = h   \times  {10}^{15}

 =  >   \dfrac{1}{2}  \times 9.1 \times  {10}^{ - 31}   \times {v}^{2}  = h   \times  {10}^{15}

 =  >   4.55 \times  {10}^{ - 31}   \times {v}^{2}  = h   \times  {10}^{15}

 =  >   4.55 \times  {10}^{ - 31}   \times {v}^{2}  = 6.63 \times  {10}^{ - 34}  \times  {10}^{15}

 =  >   4.55  \times {v}^{2}  = 6.63 \times  {10}^{ - 3}  \times  {10}^{15}

 =  >   4.55  \times {v}^{2}  = 6.63 \times    {10}^{12}

 =  >    {v}^{2}  = 1.45 \times    {10}^{12}

 =  >    v  = 1.2 \times    {10}^{6}  \: m {s}^{ - 1}

So, final answer is:

 \boxed{ \bf{v  = 1.2 \times    {10}^{6}  \: m {s}^{ - 1} }}

Similar questions