Math, asked by adityamagre1304, 9 months ago

Under root 1+cos theta/1-cos theta=cosec theta+cot theta then the quadrant in which theta lies is

Answers

Answered by BrainlyPopularman
14

GIVEN :

  \\  \: \blacktriangleright { \bold{ \sqrt{ \dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) } } =  cosec( \theta) + \cot( \theta) }} \\

TO FIND :

• The quadrant in which \:\: \theta \:\: lies is = ?

SOLUTION :

  \\  \: \implies { \bold{ \sqrt{ \dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) } } =  cosec( \theta) + \cot( \theta) }} \\

• We should write this as –

  \\  \: \implies { \bold{ \sqrt{ \dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) }  \times  \frac{1 +  \cos( \theta) }{ 1 +  \cos( \theta) } } =  cosec( \theta) + \cot( \theta) }} \\

  \\  \: \implies { \bold{ \sqrt{ \dfrac{ \{1 +  \cos( \theta)  \}^{2} }{ {(1)}^{2}  -  \cos ^{2} ( \theta) }} =  cosec( \theta) + \cot( \theta) }} \\

  \\  \: \implies { \bold{ \sqrt{ \dfrac{ \{1 +  \cos( \theta)  \}^{2} }{1 -  \cos ^{2} ( \theta) }} =  cosec( \theta) + \cot( \theta) }} \\

  \\  \: \implies { \bold{ \sqrt{ \dfrac{ \{1 +  \cos( \theta)  \}^{2} }{\sin^{2} ( \theta) }} =  cosec( \theta) + \cot( \theta) }} \\

  \\  \: \implies { \bold { \sqrt{ \left \{ \dfrac{1 +  \cos( \theta)}{\sin ( \theta) } \right \}^{2} } =  cosec( \theta) + \cot( \theta) }} \\

  \\  \: \implies { \bold { \sqrt{ \{ cosec( \theta) + \cot( \theta) \}^{2} } =  cosec( \theta) + \cot( \theta) }} \\

  \\  \: \implies { \bold { \pm \: { \{ cosec( \theta) + \cot( \theta) \} } =  cosec( \theta) + \cot( \theta) }} \\

• To satisfy the equation —

  \\  \:  \blacktriangleright \:  { \bold {cosec( \theta)  \:  \: and \:  \:  \cot( \theta) \:  \:must \:  \: be \:  \: positive.}} \\

• We also know that –

  \\  \:  \blacktriangleright \:  { \bold {cosec( \theta)  \:  \: positive \:  \: when \: \:   \theta \:  \: in \:  \: first \:\: and \:  \: second \:  \: quadrant .}} \\

• And –

  \\  \:  \blacktriangleright \:  { \bold { \cot( \theta)  \:  \: positive \:  \: when \: \:   \theta \:  \: in \:  \: first \:\: and \:  \: third \:  \: quadrant .}} \\

• Hence ,  \:\: \theta \:\: in first quadrant.

Similar questions