under root 1+cosA by 1-cosA =1+cosA by sinA
Answers
TO PROVE :–
SOLUTION :–
• Let's take L.H.S. –
• Now Rationalization of denominator –
• We know that –
• So that –
• We also know that –
• So that –
Step-by-step explanation:
TO PROVE :–
\begin{gathered} \\ \implies\rm \sqrt\dfrac{1 + \cos(A) }{1 - \cos(A) } = \dfrac{1 + \cos(A) }{ \sin(A) } \\ \end{gathered}
⟹
1−cos(A)
1+cos(A)
=
sin(A)
1+cos(A)
SOLUTION :–
• Let's take L.H.S. –
\begin{gathered} \\ \rm \: \: = \sqrt\dfrac{1 + \cos(A) }{1 - \cos(A) } \: \: \\ \end{gathered}
=
1−cos(A)
1+cos(A)
• Now Rationalization of denominator –
\begin{gathered} \\ \rm \: \: = {\sqrt{\dfrac{1 + \cos(A) }{1 - \cos(A) } \times\dfrac{1 + \cos(A) }{1 + \cos(A)}} }\: \: \\ \end{gathered}
=
1−cos(A)
1+cos(A)
×
1+cos(A)
1+cos(A)
\begin{gathered} \\ \rm \: \: = {\sqrt{\dfrac{ \{1 + \cos(A)\}^{2} }{ \{1 - \cos(A) \} \{ 1 + \cos(A)\}}}}\\ \end{gathered}
=
{1−cos(A)}{1+cos(A)}
{1+cos(A)}
2
• We know that –
\begin{gathered} \\ \large\longrightarrow{ \boxed{ \rm(a - b)(a + b) = {a}^{2} - {b}^{2} }}\\ \end{gathered}
⟶
(a−b)(a+b)=a
2
−b
2
• So that –
\begin{gathered} \\ \rm \: \: = {\sqrt{\dfrac{ \{1 + \cos(A)\}^{2} }{ \{1 - \cos^{2} (A) \}}}}\\ \end{gathered}
=
{1−cos
2
(A)}
{1+cos(A)}
2
• We also know that –
\begin{gathered} \\ \large\bf\implies \sin^{2}( \theta) +\cos^{2}( \theta) = 1\\ \end{gathered}
⟹sin
2
(θ)+cos
2
(θ)=1
\begin{gathered} \\ \large\bf\implies \sin^{2}( \theta)= 1 - \cos^{2}( \theta) \\ \end{gathered}
⟹sin
2
(θ)=1−cos
2
(θ)
\begin{gathered} \\ \large\bf\implies 1 - \cos^{2}( \theta) = \sin^{2}( \theta)\\ \end{gathered}
⟹1−cos
2
(θ)=sin
2
(θ)
• So that –
\begin{gathered} \\ \rm \: \: = \:\: {\sqrt{\dfrac{ \{1 + \cos(A)\}^{2} }{\sin^{2} (A)}}}\\ \end{gathered}
=
sin
2
(A)
{1+cos(A)}
2
\begin{gathered} \\ \rm \: \: = \: \: \dfrac{ 1 + \cos(A)}{\sin(A)}\\ \end{gathered}
=
sin(A)
1+cos(A)
\begin{gathered} \\ \rm \: \: = \: \: R.H.S. \\ \end{gathered}
=R.H.S.
\begin{gathered} \\ \large \longrightarrow{ \boxed{ \rm Hence \: \:Proved }}\\ \end{gathered}
⟶
HenceProved