Math, asked by pallavisharmalpp, 1 year ago

under root 1 + sin square theta sec square theta / 1+cos square theta cosec square theta is equal to tan theta​

Answers

Answered by MaheswariS
11

\underline{\textsf{To prove:}}

\mathsf{\displaystyle\sqrt{\dfrac{1+sin^2\theta\,sec^2\theta}{1+cos^2\theta\,cosec^2\theta}}=tan\,\theta}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\displaystyle\sqrt{\dfrac{1+sin^2\theta\,sec^2\theta}{1+cos^2\theta\,cosec^2\theta}}}

\mathsf{=\displaystyle\sqrt{\dfrac{1+sin^2\theta(\frac{1}{cos^2\theta})}{1+cos^2\theta(\frac{1}{sin^2\theta})}}}

\mathsf{=\displaystyle\sqrt{\dfrac{\dfrac{cos^2\theta+sin^2\theta}{cos^2\theta}}{\dfrac{sin^2\theta+cos^2\theta}{sin^2\theta}}}}

\textsf{Using}

\boxed{\mathsf{sin^2A+cos^2A=1}}

\mathsf{=\displaystyle\sqrt{\dfrac{\dfrac{1}{cos^2\theta}}{\dfrac{1}{sin^2\theta}}}}

\mathsf{=\displaystyle\sqrt{\dfrac{1}{cos^2\theta}{\times}\dfrac{sin^2\theta}{1}}}

\mathsf{=\displaystyle\sqrt{\dfrac{sin^2\theta}{cos^2\theta}}}

\mathsf{=\displaystyle\sqrt{tan^2\theta}}

\mathsf{=tan\theta}

\implies\boxed{\mathsf{\displaystyle\sqrt{\dfrac{1+sin^2\theta\,sec^2\theta}{1+cos^2\theta\,cosec^2\theta}}=tan\,\theta}}

Answered by vaishnavipal228
0

Step-by-step explanation:

rerrryyuiuuuyyyyyy5uuuy

Similar questions