Math, asked by navyasri56, 9 months ago

under root 1 + sin theta ÷1-sin theta =sec theta +tan theta​

Answers

Answered by BrainlyTornado
13

QUESTION:

  \sf Prove\ \ \sqrt{ \dfrac{1 + sin \ \theta }{1-sin \  \theta} } = sec \ \theta +tan \ \theta

TO PROVE:

  \sf\sqrt{ \dfrac{1 + sin \ \theta }{1-sin \  \theta} } = sec \ \theta +tan \ \theta

PROOF:

 \sf Take\   {\bf{\sqrt{ \dfrac{1 + sin \ \theta }{1-sin \  \theta} } }}\  \ as \  L.H.S

 \sf Take\  { \bf{ sec \ \theta +tan \ \theta \ }} \ as \  R.H.S

L.H.S:

 \tt{ \sqrt{ \dfrac{1 + sin \ \theta }{1-sin \  \theta} } }

  \tt{Multiply\ and\ divide\ by\  \bf\sqrt{1 + sin\ \theta}}

 \tt{ \sqrt{ \dfrac{1 + sin \ \theta }{1-sin \  \theta} \times  \dfrac{1 + sin\ \theta}{1 + sin\ \theta}} }

\blue{\boxed{\bold{\bigstar\gray{(  A+ B)(A-B) = A ^{2}  - B^{2} }}\bigstar}}

 \tt{ \sqrt{ \dfrac{(1 + sin \ \theta )^{2} }{1^{2} -sin ^{2} \  \theta} }}

\red{\boxed{\bold{\bigstar\gray{  1 -  {sin}^{2}  \theta =   {cos}^{2} \theta }}\bigstar}}

 \tt{ \sqrt{ \dfrac{(1 + sin \ \theta )^{2} }{cos ^{2} \  \theta} }}

 \tt{ \dfrac{1 + sin \ \theta  }{cos  \  \theta} }

  \large \tt{\underline{\underline{Split\ the\ numerator.}}}

 \tt{  \dfrac{1}{ cos \ \theta }  } + \left( \tt{\dfrac{ sin \ \theta  }{cos  \  \theta} } \right)

\pink{\boxed{\bold{\bigstar\gray{ \dfrac{1}{ cos \ \theta }   = sec \  \theta} \bigstar }}}

\orange{\boxed{\bold{\bigstar\gray{\left( {\dfrac{ sin \ \theta  }{cos  \  \theta} } \right) = tan \  \theta} \bigstar}}}

 \tt{  \dfrac{1}{ cos \ \theta }  }  \left( \tt{\dfrac{ sin \ \theta  }{cos  \  \theta} } \right) =sec \ \theta +  tan \ \theta

L.H.S:

 \tt  { sec \ \theta + tan \ \theta \ }

L.H.S = R.H.S

  \sf\sqrt{ \dfrac{1 + sin \ \theta }{1-sin \  \theta} } = sec \ \theta + tan \ \theta

HENCE PROVED.

Answered by BrainlyEmpire
78

\huge\pink{\underline{\boxed{\mathbb{Questions?}}}}]

under root 1 + sin theta ÷1-sin theta =sec theta +tan theta❓❓

\huge\pink{\underline{\boxed{\mathbb{AnSWeR}}}}]

✎Firstly consider L.H.S ; NOW rationalise

✎ √ 1 +SinA √ 1+ SinA

--------------- x ----------------

√ 1- SinA √1 + SinA

✎√ ( 1+ SinA)² 1+ SinA

------------------ = --------------

√ 1² - Sin²A Cos A

✎ Now consider RHS

✎= Sec A + Tan A

✎=1/ Cos A + SinA / CosA

✎=1 + SinA / CosA

\huge\green{\underline{\boxed{\mathbb{Hence ,proved}}}}]

Similar questions