Math, asked by hshahahvau2ygvwy, 1 year ago

under root 1+sinx / 1-sinx. differentiate

Answers

Answered by rakeshmohata
228

   \sqrt{ \frac{1 +  \sin(x) }{1 -  \sin(x) } }  \\  =  \sqrt{ \frac{1 +  \sin(x) }{1 -  \sin(x) }  \times  \frac{1 +  \sin(x) }{1  +   \sin(x) } }  \\  =  \sqrt{ \frac{(1 +  \sin(x)) ^{2}  }{1 -  \sin ^{2} (x) } }  =  \frac{1 +  \sin(x) }{ \cos(x) }  \\  = \sec(x)  +  \tan(x)  \\ now \:  \:  \: differentiating.... \\  \frac{d}{dx} ( \sec(x)  +  \tan(x) ) \\  =  \sec(x)  \tan(x)  +  \sec ^{2} (x) ...ans
Hope this is ur required answer.
Answered by koyanavasnik1234
40

Answer:

Step-by-step explanation :

y = √(1+sin x)/(1-sin x)

rationalising numerator and denominator

y = √(1+sin x)/(1-sin x)*(1+sin x)/(1-sin x)

y = √(1+sin x)^2 / (1-sin^2x)

y = √(1+sin x)^2 / cos^2x

y = (1+sin x) / cos x

differentiating with respect to x

d/dx y = d/dx (1+sin x)/cos x

dy/dx = [cos x d/dx (1+sin x) - (1+sin x) d/dx cos x] / (cos x)^2

d/dx = [cos x . cos x - (1+sin x)(-sin x)] / cos^2x

d/dx = [cos^2x + sinx + sin^2x] / cos^2x

d/dx = (1+sin x)/cos^2x

d/dx = sec^2x + sec x . tan x .........(ans)

Similar questions