Math, asked by Sparklezgirl1589, 19 days ago

Under root 3 sin theta = cos theta then the value of 3 cos square theta + 2 cos theta upon 3 cos theta is

Answers

Answered by NITESH761
0

Answer:

\rm \dfrac{9+4\sqrt{3}}{6\sqrt{3}}

Step-by-step explanation:

\rm \sqrt{3} \sin θ = \cos θ

\rm \sqrt{3}  = \dfrac{\cos θ}{\sin θ}

\rm \cot 30^{\circ} = \cot θ

\rm θ=30^{\circ}

\rm \dfrac{3 \cos ^2 θ + 2 \cos θ}{3 \cos θ}

\rm \dfrac{3 \cos ^2 30^{\circ} + 2 \cos 30^{\circ}}{3 \cos 30^{\circ}}

\rm \dfrac{3 \bigg( \dfrac{\sqrt{3}}{2} \bigg) ^2+ 2 \bigg( \dfrac{\sqrt{3}}{2} \bigg)}{3 \bigg( \dfrac{\sqrt{3}}{2} \bigg)}

\rm \dfrac{  \bigg(\dfrac{9}{4} \bigg) + \sqrt{3}}{  \bigg(\dfrac{3 \sqrt{3}}{2} \bigg)}

\rm \dfrac{\bigg( \dfrac{9+4\sqrt{3} }{4}\bigg)}{\bigg( \dfrac{3\sqrt{3}}{2} \bigg)}

\rm \dfrac{\bigg( \dfrac{9+4\sqrt{3}}{2}\bigg)}{3\sqrt{3}}

\rm \dfrac{9+4\sqrt{3}}{6\sqrt{3}}

Similar questions